BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29780541)

  • 1. DNA-binding miniproteins based on zinc fingers. Assessment of the interaction using nanopores.
    Rodríguez J; Learte-Aymamí S; Mosquera J; Celaya G; Rodríguez-Larrea D; Vázquez ME; Mascareñas JL
    Chem Sci; 2018 May; 9(17):4118-4123. PubMed ID: 29780541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Construction of a SV40 promoter specific artificial transcription factor].
    Zhao XH; Zhu XD; Liu J; Rao XJ; Huang PT
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):608-12. PubMed ID: 15969093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial nine zinc-finger peptide with 30 base pair binding sites.
    Kamiuchi T; Abe E; Imanishi M; Kaji T; Nagaoka M; Sugiura Y
    Biochemistry; 1998 Sep; 37(39):13827-34. PubMed ID: 9753472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of major and minor groove DNA interactions by the zinc fingers of Xenopus transcription factor IIIA.
    McBryant SJ; Gedulin B; Clemens KR; Wright PE; Gottesfeld JM
    Nucleic Acids Res; 1996 Jul; 24(13):2567-74. PubMed ID: 8692697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors.
    Dreier B; Beerli RR; Segal DJ; Flippin JD; Barbas CF
    J Biol Chem; 2001 Aug; 276(31):29466-78. PubMed ID: 11340073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bulkiness and hydrophobicity of an aliphatic amino acid in the recognition helix of the GAGA zinc finger on the stability of the hydrophobic core and DNA binding affinity.
    Dhanasekaran M; Negi S; Imanishi M; Suzuki M; Sugiura Y
    Biochemistry; 2008 Nov; 47(45):11717-24. PubMed ID: 18855425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining structure-based design with phage display to create new Cys(2)His(2) zinc finger dimers.
    Wolfe SA; Ramm EI; Pabo CO
    Structure; 2000 Jul; 8(7):739-50. PubMed ID: 10903945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code.
    Wolfe SA; Greisman HA; Ramm EI; Pabo CO
    J Mol Biol; 1999 Feb; 285(5):1917-34. PubMed ID: 9925775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRE-Binding transcription factor-1: weak zinc-binding finger domains 5 and 6 modulate the structure, affinity, and specificity of the metal-response element complex.
    Chen X; Chu M; Giedroc DP
    Biochemistry; 1999 Sep; 38(39):12915-25. PubMed ID: 10504263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the DNA-binding properties of the myeloid zinc finger protein MZF1: two independent DNA-binding domains recognize two DNA consensus sequences with a common G-rich core.
    Morris JF; Hromas R; Rauscher FJ
    Mol Cell Biol; 1994 Mar; 14(3):1786-95. PubMed ID: 8114711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding.
    Pedone PV; Ghirlando R; Clore GM; Gronenborn AM; Felsenfeld G; Omichinski JG
    Proc Natl Acad Sci U S A; 1996 Apr; 93(7):2822-6. PubMed ID: 8610125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence: determinants of affinity and sequence specificity.
    Wuttke DS; Foster MP; Case DA; Gottesfeld JM; Wright PE
    J Mol Biol; 1997 Oct; 273(1):183-206. PubMed ID: 9367756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence-selective DNA recognition with peptide-bisbenzamidine conjugates.
    Sánchez MI; Vázquez O; Vázquez ME; Mascareñas JL
    Chemistry; 2013 Jul; 19(30):9923-9. PubMed ID: 23780839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity.
    Espinás ML; Jiménez-García E; Vaquero A; Canudas S; Bernués J; Azorín F
    J Biol Chem; 1999 Jun; 274(23):16461-9. PubMed ID: 10347208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation.
    Klug A
    Q Rev Biophys; 2010 Feb; 43(1):1-21. PubMed ID: 20478078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics modelling of the interaction of a synthetic zinc-finger miniprotein with DNA.
    Rodriguez J; Battistini F; Learte-Aymamí S; Orozco M; Mascareñas JL
    RSC Chem Biol; 2023 Jul; 4(7):486-493. PubMed ID: 37415868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies.
    Gersbach CA; Gaj T; Barbas CF
    Acc Chem Res; 2014 Aug; 47(8):2309-18. PubMed ID: 24877793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific interaction of the first three zinc fingers of TFIIIA with the internal control region of the Xenopus 5 S RNA gene.
    Liao XB; Clemens KR; Tennant L; Wright PE; Gottesfeld JM
    J Mol Biol; 1992 Feb; 223(4):857-71. PubMed ID: 1538401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the DNA-binding affinity and specificity of designed zinc finger proteins.
    Jantz D; Berg JM
    Biophys J; 2010 Mar; 98(5):852-60. PubMed ID: 20197039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the DNA binding activity of the ZFY zinc finger domain.
    Grants J; Flanagan E; Yee A; Romaniuk PJ
    Biochemistry; 2010 Feb; 49(4):679-86. PubMed ID: 20028140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.