These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29780584)

  • 1. Opening the black box of spring water microbiology from alpine karst aquifers to support proactive drinking water resource management.
    Savio D; Stadler P; Reischer GH; Kirschner AKT; Demeter K; Linke R; Blaschke AP; Sommer R; Szewzyk U; Wilhartitz IC; Mach RL; Stadler H; Farnleitner AH
    WIREs Water; 2018; 5(3):e1282. PubMed ID: 29780584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities.
    Farnleitner AH; Wilhartitz I; Ryzinska G; Kirschner AK; Stadler H; Burtscher MM; Hornek R; Szewzyk U; Herndl G; Mach RL
    Environ Microbiol; 2005 Aug; 7(8):1248-59. PubMed ID: 16011762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spectral absorption coefficient at 254 nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources.
    Stadler H; Klock E; Skritek P; Mach RL; Zerobin W; Farnleitner AH
    Water Sci Technol; 2010; 62(8):1898-906. PubMed ID: 20962406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spring Water of an Alpine Karst Aquifer Is Dominated by a Taxonomically Stable but Discharge-Responsive Bacterial Community.
    Savio D; Stadler P; Reischer GH; Demeter K; Linke RB; Blaschke AP; Mach RL; Kirschner AKT; Stadler H; Farnleitner AH
    Front Microbiol; 2019; 10():28. PubMed ID: 30828319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple fluorescence approaches to identify rapid changes in microbial indicators at karst springs.
    Vucinic L; O'Connell D; Dubber D; Coxon C; Gill L
    J Contam Hydrol; 2023 Mar; 254():104129. PubMed ID: 36634484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow Cytometry and Fecal Indicator Bacteria Analyses for Fingerprinting Microbial Pollution in Karst Aquifer Systems.
    Vucinic L; O'Connell D; Teixeira R; Coxon C; Gill L
    Water Resour Res; 2022 May; 58(5):e2021WR029840. PubMed ID: 35859924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications.
    Wilhartitz IC; Kirschner AK; Stadler H; Herndl GJ; Dietzel M; Latal C; Mach RL; Farnleitner AH
    FEMS Microbiol Ecol; 2009 Jun; 68(3):287-99. PubMed ID: 19490127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Microbial Source Tracking Support QMRA Modeling for a Riverine Wetland Drinking Water Resource.
    Derx J; Demeter K; Linke R; Cervero-Aragó S; Lindner G; Stalder G; Schijven J; Sommer R; Walochnik J; Kirschner AKT; Komma J; Blaschke AP; Farnleitner AH
    Front Microbiol; 2021; 12():668778. PubMed ID: 34335498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial Source Tracking in Adjacent Karst Springs.
    Ohad S; Vaizel-Ohayon D; Rom M; Guttman J; Berger D; Kravitz V; Pilo S; Huberman Z; Kashi Y; Rorman E
    Appl Environ Microbiol; 2015 Aug; 81(15):5037-47. PubMed ID: 26002893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management and research strategies of karst aquifers in Greece: Literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer.
    Kazakis N; Chalikakis K; Mazzilli N; Ollivier C; Manakos A; Voudouris K
    Sci Total Environ; 2018 Dec; 643():592-609. PubMed ID: 29957427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a numerical indicator of microbial contamination for karst springs.
    Butscher C; Auckenthaler A; Scheidler S; Huggenberger P
    Ground Water; 2011; 49(1):66-76. PubMed ID: 20180864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and variability of fecal bacteria in carbonate conglomerate aquifers.
    Goeppert N; Goldscheider N
    Ground Water; 2011; 49(1):77-84. PubMed ID: 20678141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contaminant sources and processes affecting spring water quality in a typical karst basin (Hongjiadu Basin, SW China): insights provided by hydrochemical and isotopic data.
    Ren K; Pan X; Zeng J; Yuan D
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31354-31367. PubMed ID: 31473924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial source tracking in highly vulnerable karst drinking water resources.
    Diston D; Robbi R; Baumgartner A; Felleisen R
    J Water Health; 2018 Feb; 16(1):138-149. PubMed ID: 29424727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecotoxicological aspects related to the occurrence of emerging contaminants in the Dinaric karst aquifer of Jadro and Žrnovnica springs.
    Selak A; Reberski JL; Klobučar G; Grčić I
    Sci Total Environ; 2022 Jun; 825():153827. PubMed ID: 35157871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global karst springs hydrograph dataset for research and management of the world's fastest-flowing groundwater.
    Olarinoye T; Gleeson T; Marx V; Seeger S; Adinehvand R; Allocca V; Andreo B; Apaéstegui J; Apolit C; Arfib B; Auler A; Bailly-Comte V; Barberá JA; Batiot-Guilhe C; Bechtel T; Binet S; Bittner D; Blatnik M; Bolger T; Brunet P; Charlier JB; Chen Z; Chiogna G; Coxon G; De Vita P; Doummar J; Epting J; Fleury P; Fournier M; Goldscheider N; Gunn J; Guo F; Guyot JL; Howden N; Huggenberger P; Hunt B; Jeannin PY; Jiang G; Jones G; Jourde H; Karmann I; Koit O; Kordilla J; Labat D; Ladouche B; Liso IS; Liu Z; Maréchal JC; Massei N; Mazzilli N; Mudarra M; Parise M; Pu J; Ravbar N; Sanchez LH; Santo A; Sauter M; Seidel JL; Sivelle V; Skoglund RØ; Stevanovic Z; Wood C; Worthington S; Hartmann A
    Sci Data; 2020 Feb; 7(1):59. PubMed ID: 32080203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs.
    Frank S; Goeppert N; Goldscheider N
    Sci Total Environ; 2018 Feb; 615():1446-1459. PubMed ID: 28935241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Health Risk Assessment in Southern Carpathians Small Rural Communities Using Karst Springs as a Drinking Water Source.
    Moldovan A; Török AI; Mirea IC; Micle V; Moldovan OT; Levei EA
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs.
    Pronk M; Goldscheider N; Zopfi J
    Environ Sci Technol; 2007 Dec; 41(24):8400-5. PubMed ID: 18200870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.