These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29780657)

  • 1. Characterizing cellular mechanical phenotypes with mechano-node-pore sensing.
    Kim J; Han S; Lei A; Miyano M; Bloom J; Srivastava V; Stampfer MM; Gartner ZJ; LaBarge MA; Sohn LL
    Microsyst Nanoeng; 2018; 4():. PubMed ID: 29780657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechano-Node-Pore Sensing: A Rapid, Label-Free Platform for Multi-Parameter Single-Cell Viscoelastic Measurements.
    Lai A; Rex R; Cotner KL; Dong A; Lustig M; Sohn LL
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36533823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Zone Visco-Node-Pore Sensing: A Microfluidic Platform for Multi-Frequency Viscoelastic Phenotyping of Single Cells.
    Lai A; Hinz S; Dong A; Lustig M; LaBarge MA; Sohn LL
    Adv Sci (Weinh); 2024 Sep; ():e2406013. PubMed ID: 39308179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visco-Node-Pore Sensing: A Microfluidic Rheology Platform to Characterize Viscoelastic Properties of Epithelial Cells.
    Kim J; Li B; Scheideler OJ; Kim Y; Sohn LL
    iScience; 2019 Mar; 13():214-228. PubMed ID: 30870780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating sources of technical variability in the mechano-node-pore sensing pipeline and their effect on the reproducibility of single-cell mechanical phenotyping.
    Li B; Cotner KL; Liu NK; Hinz S; LaBarge MA; Sohn LL
    PLoS One; 2021; 16(10):e0258982. PubMed ID: 34695165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Cell Stretching in Viscoelastic Fluids with Electronically Triggered Imaging for Cellular Mechanical Phenotyping.
    Liang M; Yang D; Zhou Y; Li P; Zhong J; Ai Y
    Anal Chem; 2021 Mar; 93(10):4567-4575. PubMed ID: 33661609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Node-Pore Sensing for Characterizing Cells and Extracellular Vesicles.
    Carey T; Li B; Sohn LL
    Methods Mol Biol; 2022; 2394():171-183. PubMed ID: 35094328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical phenotyping of breast cell lines by in-flow deformation-dependent dynamics under tuneable compressive forces.
    Dannhauser D; Maremonti MI; Panzetta V; Rossi D; Netti PA; Causa F
    Lab Chip; 2020 Dec; 20(24):4611-4622. PubMed ID: 33146642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput adjustable deformability cytometry utilizing elasto-inertial focusing and virtual fluidic channel.
    Zhou Z; Ni C; Zhu Z; Chen Y; Ni Z; Xiang N
    Lab Chip; 2023 Oct; 23(20):4528-4539. PubMed ID: 37766593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Node-pore sensing enables label-free surface-marker profiling of single cells.
    Balakrishnan KR; Whang JC; Hwang R; Hack JH; Godley LA; Sohn LL
    Anal Chem; 2015 Mar; 87(5):2988-95. PubMed ID: 25625182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance-Enabled Camera-Free Intrinsic Mechanical Cytometry.
    Feng Y; Chai H; He W; Liang F; Cheng Z; Wang W
    Small Methods; 2022 Jul; 6(7):e2200325. PubMed ID: 35595712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic electroporative flow cytometry for studying single-cell biomechanics.
    Bao N; Zhan Y; Lu C
    Anal Chem; 2008 Oct; 80(20):7714-9. PubMed ID: 18798650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation.
    Jung Y; Kim SH; Kim SH; Kim YH; Xie J; Matsuda T; Min BG
    J Biomater Sci Polym Ed; 2008; 19(1):61-74. PubMed ID: 18177554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device.
    Zhou Y; Yang D; Zhou Y; Khoo BL; Han J; Ai Y
    Anal Chem; 2018 Jan; 90(1):912-919. PubMed ID: 29172457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip.
    Prevedello L; Michielin F; Balcon M; Savio E; Pavan P; Elvassore N
    Ann Biomed Eng; 2019 Jan; 47(1):231-242. PubMed ID: 30218223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformability-based flow cytometry.
    Lincoln B; Erickson HM; Schinkinger S; Wottawah F; Mitchell D; Ulvick S; Bilby C; Guck J
    Cytometry A; 2004 Jun; 59(2):203-9. PubMed ID: 15170599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification of nuclear deformation of breast cancer cells by seeding on micropatterned surfaces to better distinguish their malignancies.
    Antmen E; Demirci U; Hasirci V
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110402. PubMed ID: 31398621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.