BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29780971)

  • 1. Acquisition of Bioelectrical Signals with Small Electrodes.
    Viswam V; Obien M; Frey U; Franke F; Hierlemann A
    IEEE Biomed Circuits Syst Conf; 2018 Mar; 2017():1-4. PubMed ID: 29780971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal Electrode Size for Multi-Scale Extracellular-Potential Recording From Neuronal Assemblies.
    Viswam V; Obien MEJ; Franke F; Frey U; Hierlemann A
    Front Neurosci; 2019; 13():385. PubMed ID: 31105515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considerations on noise of electrodes in combination with amplifiers for bioelectrical signal recording.
    Koch KP; Schuettler M; Stieglitz T
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():514-6. PubMed ID: 12465222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings.
    Kamat AA; Paskaranandavadivel N; Alighaleh S; Cheng LK; Angeli TR
    Ann Biomed Eng; 2020 Apr; 48(4):1407-1418. PubMed ID: 31980997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable Sponge Electrodes for Long-Term and Motion-Artifact-Tolerant Recording of High-Quality Electrophysiologic Signals.
    Lo LW; Zhao J; Aono K; Li W; Wen Z; Pizzella S; Wang Y; Chakrabartty S; Wang C
    ACS Nano; 2022 Aug; 16(8):11792-11801. PubMed ID: 35861486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance scaling for gold and platinum microelectrodes.
    Fan B; Wolfrum B; Robinson JT
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34433150
    [No Abstract]   [Full Text] [Related]  

  • 9. Improved "active" electrodes for recording bioelectric signals in work physiology.
    Hagemann B; Luhede G; Luczak H
    Eur J Appl Physiol Occup Physiol; 1985; 54(1):95-8. PubMed ID: 4018063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extramuscular Recording of Spontaneous EMG Activity and Transcranial Electrical Elicited Motor Potentials in Horses: Characteristics of Different Subcutaneous and Surface Electrode Types and Practical Guidelines.
    Journée SL; Journée HL; Reed SM; Berends HI; de Bruijn CM; Delesalle CJG
    Front Neurosci; 2020; 14():652. PubMed ID: 32765207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording Quality Is Systematically Related to Electrode Impedance.
    Lewis CM; Boehler C; Liljemalm R; Fries P; Stieglitz T; Asplund M
    Adv Healthc Mater; 2024 Feb; ():e2303401. PubMed ID: 38354063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-invasive Drosophila ECG recording by using eutectic gallium-indium alloy electrode: a feasible tool for future research on the molecular mechanisms involved in cardiac arrhythmia.
    Kuo PH; Tzeng TH; Huang YC; Chen YH; Chang YC; Ho YL; Wu JT; Lee HH; Lai PJ; Liu KY; Cheng YC; Lu SS
    PLoS One; 2014; 9(9):e104543. PubMed ID: 25226390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless CardioS framework for continuous ECG acquisition.
    Sriraam N; Srinivasulu A; Prakash VS
    J Med Eng Technol; 2023; 47(4):201-216. PubMed ID: 37910047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nanozyme-Based Electrode for High-Performance Neural Recording.
    Liu S; Wang Y; Zhao Y; Liu L; Sun S; Zhang S; Liu H; Liu S; Li Y; Yang F; Jiao M; Sun X; Zhang Y; Liu R; Mu X; Wang H; Zhang S; Yang J; Xie X; Duan X; Zhang J; Hong G; Zhang XD; Ming D
    Adv Mater; 2024 Feb; 36(6):e2304297. PubMed ID: 37882151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Improving the Quality of Electrophysiological Signal Recordings by Using Microneedle Electrode Arrays.
    Wang Y; Jiang L; Ren L; Pingao H; Yu M; Tian L; Li X; Xie J; Fang P; Li G
    IEEE Trans Biomed Eng; 2021 Nov; 68(11):3327-3335. PubMed ID: 33798063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Temperature Atomic Layer Deposited Oxide on Titanium Nitride Electrodes Enables Culture and Physiological Recording of Electrogenic Cells.
    Dollt M; Reh M; Metzger M; Heusel G; Kriebel M; Bucher V; Zeck G
    Front Neurosci; 2020; 14():552876. PubMed ID: 33071735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry Electrodes for Human Bioelectrical Signal Monitoring.
    Fu Y; Zhao J; Dong Y; Wang X
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32610658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.
    Puurtinen MM; Komulainen SM; Kauppinen PK; Malmivuo JA; Hyttinen JA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6012-5. PubMed ID: 17946734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding charge transfer on the clinically used conical Utah electrode array: charge storage capacity, electrochemical impedance spectroscopy and effective electrode area.
    Harris AR
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33401255
    [No Abstract]   [Full Text] [Related]  

  • 20. Scalp electrode impedance, infection risk, and EEG data quality.
    Ferree TC; Luu P; Russell GS; Tucker DM
    Clin Neurophysiol; 2001 Mar; 112(3):536-44. PubMed ID: 11222977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.