These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29780993)

  • 1. Ideal reversible polymer networks.
    Parada GA; Zhao X
    Soft Matter; 2018 Jun; 14(25):5186-5196. PubMed ID: 29780993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Network Topology on the Viscoelastic Properties of Dynamically Crosslinked Hydrogels.
    Grad EM; Tunn I; Voerman D; de Léon AS; Hammink R; Blank KG
    Front Chem; 2020; 8():536. PubMed ID: 32719773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging experiments and theory: isolating the effects of metal-ligand interactions on viscoelasticity of reversible polymer networks.
    Zhang X; Vidavsky Y; Aharonovich S; Yang SJ; Buche MR; Diesendruck CE; Silberstein MN
    Soft Matter; 2020 Sep; 16(37):8591-8601. PubMed ID: 32785407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed Reversible Covalent Crosslink Kinetics Enable Precise, Hierarchical Mechanical Tuning of Hydrogel Networks.
    Yesilyurt V; Ayoob AM; Appel EA; Borenstein JT; Langer R; Anderson DG
    Adv Mater; 2017 May; 29(19):. PubMed ID: 28295624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing entropy to enhance toughness in reversibly crosslinked polymer networks.
    Tito NB; Creton C; Storm C; Ellenbroek WG
    Soft Matter; 2019 Mar; 15(10):2190-2203. PubMed ID: 30747183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear viscoelastic properties of transient networks formed by associating polymers with multiple stickers.
    Indei T; Takimoto J
    J Chem Phys; 2010 Nov; 133(19):194902. PubMed ID: 21090870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear rheology of water-soluble reversible neodymium(III) coordination polymers.
    Vermonden T; van Steenbergen MJ; Besseling NA; Marcelis AT; Hennink WE; Sudhölter EJ; Cohen Stuart MA
    J Am Chem Soc; 2004 Dec; 126(48):15802-8. PubMed ID: 15571405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological behavior of self-assembling PEG-beta-cyclodextrin/PEG-cholesterol hydrogels.
    van de Manakker F; Vermonden T; El Morabit N; van Nostrum CF; Hennink WE
    Langmuir; 2008 Nov; 24(21):12559-67. PubMed ID: 18828611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictably Engineering the Viscoelastic Behavior of Dynamic Hydrogels via Correlation with Molecular Parameters.
    Lou J; Friedowitz S; Will K; Qin J; Xia Y
    Adv Mater; 2021 Dec; 33(51):e2104460. PubMed ID: 34636090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain rate and temperature dependence of the mechanical properties of polymers: A universal time-temperature superposition principle.
    Tao W; Shen J; Chen Y; Liu J; Gao Y; Wu Y; Zhang L; Tsige M
    J Chem Phys; 2018 Jul; 149(4):044105. PubMed ID: 30068199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling viscoelastic relaxation mechanisms in thermorheologically complex Fe(III)-poly(acrylic acid) hydrogels.
    Lenoch A; Schönhoff M; Cramer C
    Soft Matter; 2022 Nov; 18(44):8467-8475. PubMed ID: 36317679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining Tube Theory Parameters by Slip-Spring Model Simulations of Entangled Star Polymers in Fixed Networks.
    Cao J; Wang Z; Likhtman AE
    Polymers (Basel); 2019 Mar; 11(3):. PubMed ID: 30960480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length-scale dependent relaxation shear modulus and viscoelastic hydrodynamic interactions in polymer liquids.
    Semenov AN; Farago J; Meyer H
    J Chem Phys; 2012 Jun; 136(24):244905. PubMed ID: 22755601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control Viscoelasticity of Polymer Networks with Crosslinks of Superposed Fast and Slow Dynamics.
    Chen H; Zhang J; Yu W; Cao Y; Cao Z; Tan Y
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22332-22338. PubMed ID: 34008254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological study of transient networks with junctions of limited multiplicity. II. Sol/gel transition and rheology.
    Indei T
    J Chem Phys; 2007 Oct; 127(14):144905. PubMed ID: 17935437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological study of transient networks with junctions of limited multiplicity.
    Indei T
    J Chem Phys; 2007 Oct; 127(14):144904. PubMed ID: 17935436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties.
    Yang J; Gong C; Shi FK; Xie XM
    J Phys Chem B; 2012 Oct; 116(39):12038-47. PubMed ID: 22950674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-healing hydrogels formed by complexation between calcium ions and bisphosphonate-functionalized star-shaped polymers.
    Lopez-Perez PM; da Silva RMP; Strehin I; Kouwer PHJ; Leeuwenburgh SCG; Messersmith PB
    Macromolecules; 2017; 50(21):8698-8706. PubMed ID: 29403089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversibly tuning hydrogel stiffness through photocontrolled dynamic covalent crosslinks.
    Accardo JV; Kalow JA
    Chem Sci; 2018 Jul; 9(27):5987-5993. PubMed ID: 30079213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static and dynamic properties of large polymer melts in equilibrium.
    Hsu HP; Kremer K
    J Chem Phys; 2016 Apr; 144(15):154907. PubMed ID: 27389240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.