BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29781016)

  • 21. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems.
    Firdessa R; Oelschlaeger TA; Moll H
    Eur J Cell Biol; 2014; 93(8-9):323-37. PubMed ID: 25224362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concentration-controlled formation of myoglobin/gold nanosphere aggregates.
    Sevilla P; Sánchez-Cortés S; García-Ramos JV; Feis A
    J Phys Chem B; 2014 May; 118(19):5082-92. PubMed ID: 24773569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor-homing, size-tunable clustered nanoparticles for anticancer therapeutics.
    Kim J; Lee YM; Kang Y; Kim WJ
    ACS Nano; 2014 Sep; 8(9):9358-67. PubMed ID: 25184691
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation.
    Esfahani MR; Pallem VL; Stretz HA; Wells MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():100-109. PubMed ID: 28024243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile and controlled fabrication of functional gold nanoparticle-coated polystyrene composite particle.
    Li Y; Pan Y; Zhu L; Wang Z; Su D; Xue G
    Macromol Rapid Commun; 2011 Nov; 32(21):1741-7. PubMed ID: 21858894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse Size Dependences of the Cellular Uptake of Triangular and Spherical Gold Nanoparticles.
    Nambara K; Niikura K; Mitomo H; Ninomiya T; Takeuchi C; Wei J; Matsuo Y; Ijiro K
    Langmuir; 2016 Nov; 32(47):12559-12567. PubMed ID: 27653187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multilayer coating of gold nanoparticles with drug-polymer coadsorbates.
    Reum N; Fink-Straube C; Klein T; Hartmann RW; Lehr CM; Schneider M
    Langmuir; 2010 Nov; 26(22):16901-8. PubMed ID: 20964349
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pericellular matrix enhances retention and cellular uptake of nanoparticles.
    Zhou R; Zhou H; Xiong B; He Y; Yeung ES
    J Am Chem Soc; 2012 Aug; 134(32):13404-9. PubMed ID: 22861162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells.
    Murali K; Kenesei K; Li Y; Demeter K; Környei Z; Madarász E
    Nanoscale; 2015 Mar; 7(9):4199-210. PubMed ID: 25673096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles.
    Jiang Y; Huo S; Mizuhara T; Das R; Lee YW; Hou S; Moyano DF; Duncan B; Liang XJ; Rotello VM
    ACS Nano; 2015 Oct; 9(10):9986-93. PubMed ID: 26435075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted optical injection of gold nanoparticles into single mammalian cells.
    McDougall C; Stevenson DJ; Brown CT; Gunn-Moore F; Dholakia K
    J Biophotonics; 2009 Dec; 2(12):736-43. PubMed ID: 19603388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-situ incorporation of gold nanoparticles of desired sizes into three-dimensional macroporous matrixes.
    Ding S; Qian W; Tan Y; Wang Y
    Langmuir; 2006 Aug; 22(17):7105-8. PubMed ID: 16893196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new strategy for the controlled deposition of gold nanoparticle aggregates on two-dimensional polystyrene arrays and its application in glucose oxidase immobilization.
    Xia Y; Li J; Jiang L
    J Colloid Interface Sci; 2012 Jul; 377(1):34-9. PubMed ID: 22498366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusion of nanoparticles in semidilute and entangled polymer solutions.
    Omari RA; Aneese AM; Grabowski CA; Mukhopadhyay A
    J Phys Chem B; 2009 Jun; 113(25):8449-52. PubMed ID: 19476342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High thermal stability of block copolymer-capped Au and Cu nanoparticles.
    Perepichka II; Mezour MA; Perepichka DF; Lennox RB
    Chem Commun (Camb); 2014 Oct; 50(80):11919-21. PubMed ID: 25156565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of metal-liquid interface composition on the adsorption of a cyanine dye onto gold nanoparticles.
    Guerrini L; Jurasekova Z; del Puerto E; Hartsuiker L; Domingo C; Garcia-Ramos JV; Otto C; Sanchez-Cortes S
    Langmuir; 2013 Jan; 29(4):1139-47. PubMed ID: 23281711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues.
    Gromnicova R; Kaya M; Romero IA; Williams P; Satchell S; Sharrack B; Male D
    PLoS One; 2016; 11(8):e0161610. PubMed ID: 27560685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles: probing the initial adsorption/desorption induced lipid phase transition.
    Wang F; Liu J
    Nanoscale; 2015 Oct; 7(38):15599-604. PubMed ID: 26372064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.