These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
608 related articles for article (PubMed ID: 29781219)
1. Disentangling the effects of acidic air pollution, atmospheric CO Mathias JM; Thomas RB Glob Chang Biol; 2018 Sep; 24(9):3938-3953. PubMed ID: 29781219 [TBL] [Abstract][Full Text] [Related]
2. Differences in leaf gas exchange strategies explain Quercus rubra and Liriodendron tulipifera intrinsic water use efficiency responses to air pollution and climate change. Mathias JM; Smith KR; Lantz KE; Allen KT; Wright MJ; Sabet A; Anderson-Teixeira KJ; Thomas RB Glob Chang Biol; 2023 Jun; 29(12):3449-3462. PubMed ID: 36897273 [TBL] [Abstract][Full Text] [Related]
3. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act. Thomas RB; Spal SE; Smith KR; Nippert JB Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15319-24. PubMed ID: 24003125 [TBL] [Abstract][Full Text] [Related]
4. Mineral nutrition and elevated [CO(2)] interact to modify δ(13)C, an index of gas exchange, in Norway spruce. Marshall JD; Linder S Tree Physiol; 2013 Nov; 33(11):1132-44. PubMed ID: 23425689 [TBL] [Abstract][Full Text] [Related]
5. Limited evidence for CO Reed CC; Ballantyne AP; Cooper LA; Sala A Glob Chang Biol; 2018 Sep; 24(9):3922-3937. PubMed ID: 29658158 [TBL] [Abstract][Full Text] [Related]
6. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research. Ryan MG Tree Physiol; 2013 Nov; 33(11):1123-31. PubMed ID: 24300337 [TBL] [Abstract][Full Text] [Related]
7. A conceptual framework: redefining forest soil's critical acid loads under a changing climate. McNulty SG; Boggs JL Environ Pollut; 2010 Jun; 158(6):2053-8. PubMed ID: 20045233 [TBL] [Abstract][Full Text] [Related]
8. Response strategies of boreal spruce trees to anthropogenic changes in air quality and rising pCO Savard MM; Bégin C; Marion J Environ Pollut; 2020 Jun; 261():114209. PubMed ID: 32220752 [TBL] [Abstract][Full Text] [Related]
9. Growth enhancement of Picea abies trees under long-term, low-dose N addition is due to morphological more than to physiological changes. Krause K; Cherubini P; Bugmann H; Schleppi P Tree Physiol; 2012 Dec; 32(12):1471-81. PubMed ID: 23135740 [TBL] [Abstract][Full Text] [Related]
10. Contrasting growth responses of Qilian juniper (Sabina przewalskii) and Qinghai spruce (Picea crassifolia) to CO2 fertilization despite common water-use efficiency increases at the northeastern Qinghai-Tibetan plateau. Wang W; McDowell NG; Liu X; Xu G; Wu G; Zeng X; Wang G Tree Physiol; 2021 Jun; 41(6):992-1003. PubMed ID: 33367904 [TBL] [Abstract][Full Text] [Related]
11. Complex Physiological Response of Norway Spruce to Atmospheric Pollution - Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment. Čada V; Šantrůčková H; Šantrůček J; Kubištová L; Seedre M; Svoboda M Front Plant Sci; 2016; 7():805. PubMed ID: 27375659 [TBL] [Abstract][Full Text] [Related]
12. Increased spruce tree growth in Central Europe since 1960s. Cienciala E; Altman J; Doležal J; Kopáček J; Štěpánek P; Ståhl G; Tumajer J Sci Total Environ; 2018 Apr; 619-620():1637-1647. PubMed ID: 29122345 [TBL] [Abstract][Full Text] [Related]
13. Impacts of elevated CO Pernicová N; Urban O; Čáslavský J; Kolář T; Rybníček M; Sochová I; Peñuelas J; Bošeľa M; Trnka M Sci Total Environ; 2024 Apr; 921():171173. PubMed ID: 38401718 [TBL] [Abstract][Full Text] [Related]
14. Increasing water-use efficiency mediates effects of atmospheric carbon, sulfur, and nitrogen on growth variability of central European conifers. Treml V; Tumajer J; Jandová K; Oulehle F; Rydval M; Čada V; Treydte K; Mašek J; Vondrovicová L; Lhotáková Z; Svoboda M Sci Total Environ; 2022 Sep; 838(Pt 3):156483. PubMed ID: 35675888 [TBL] [Abstract][Full Text] [Related]
15. Drainage affects tree growth and C and N dynamics in a minerotrophic peatland. Choi WJ; Chang SX; Bhatti JS Ecology; 2007 Feb; 88(2):443-53. PubMed ID: 17479762 [TBL] [Abstract][Full Text] [Related]
16. Elevation-dependent variations of tree growth and intrinsic water-use efficiency in Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountains, China. Wu G; Liu X; Chen T; Xu G; Wang W; Zeng X; Zhang X Front Plant Sci; 2015; 6():309. PubMed ID: 25999973 [TBL] [Abstract][Full Text] [Related]
17. Drought-induced stomatal closure probably cannot explain divergent white spruce growth in the Brooks Range, Alaska, USA. Brownlee AH; Sullivan PF; Csank AZ; Sveinbjörnsson B; Ellison SB Ecology; 2016 Jan; 97(1):145-59. PubMed ID: 27008784 [TBL] [Abstract][Full Text] [Related]
18. Do atmospheric CO2 concentration increase, climate and forest management affect iWUE of common beech? Evidences from carbon isotope analyses in tree rings. Rezaie N; D'Andrea E; Bräuning A; Matteucci G; Bombi P; Lauteri M Tree Physiol; 2018 Aug; 38(8):1110-1126. PubMed ID: 29579292 [TBL] [Abstract][Full Text] [Related]
19. Rapid recovery of stem increment in Norway spruce at reduced SO2 levels in the Harz Mountains, Germany. Hauck M; Zimmermann J; Jacob M; Dulamsuren C; Bade C; Ahrends B; Leuschner C Environ Pollut; 2012 May; 164():132-41. PubMed ID: 22361051 [TBL] [Abstract][Full Text] [Related]
20. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US. Boggs JL; McNulty SG; Pardo LH Environ Pollut; 2007 Oct; 149(3):303-14. PubMed ID: 17600603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]