These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29781271)

  • 21. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
    Wallentin CJ; Nguyen JD; Stephenson CR
    Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic Asymmetric Synthesis of Fluoroalkyl-Containing Compounds by Three-Component Photoredox Chemistry.
    Ma J; Xie X; Meggers E
    Chemistry; 2018 Jan; 24(1):259-265. PubMed ID: 29105857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combining rhodium and photoredox catalysis for C-H functionalizations of arenes: oxidative Heck reactions with visible light.
    Fabry DC; Zoller J; Raja S; Rueping M
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10228-31. PubMed ID: 25159225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiophenol-Catalyzed Visible-Light Photoredox Decarboxylative Couplings of N-(Acetoxy)phthalimides.
    Jin Y; Yang H; Fu H
    Org Lett; 2016 Dec; 18(24):6400-6403. PubMed ID: 27978669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoredox functionalization of C-H bonds adjacent to a nitrogen atom.
    Shi L; Xia W
    Chem Soc Rev; 2012 Dec; 41(23):7687-97. PubMed ID: 22869017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visible-Light-Induced Trifluoromethylation of Allylic Alcohols.
    Li B; Zeng W; Wang L; Geng Z; Loh TP; Xie P
    Org Lett; 2021 Jul; 23(13):5235-5240. PubMed ID: 34156254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-free carbonylations by photoredox catalysis.
    Majek M; Jacobi von Wangelin A
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2270-4. PubMed ID: 25414135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visible light photoredox catalysis: applications in organic synthesis.
    Narayanam JM; Stephenson CR
    Chem Soc Rev; 2011 Jan; 40(1):102-13. PubMed ID: 20532341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric photoredox transition-metal catalysis activated by visible light.
    Huo H; Shen X; Wang C; Zhang L; Röse P; Chen LA; Harms K; Marsch M; Hilt G; Meggers E
    Nature; 2014 Nov; 515(7525):100-3. PubMed ID: 25373679
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brønsted Acid-Catalysed Dehydrative Substitution Reactions of Alcohols.
    Estopiñá-Durán S; Taylor JE
    Chemistry; 2021 Jan; 27(1):106-120. PubMed ID: 32491202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly efficient synthesis of tri- and tetrasubstituted conjugated enynes from Brønsted acid catalyzed alkoxylation of 1-cyclopropylprop-2-yn-1-ols with alcohols.
    Mothe SR; Chan PW
    J Org Chem; 2009 Aug; 74(16):5887-93. PubMed ID: 19630423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct C-H Phosphonylation of Electron-Rich Arenes and Heteroarenes by Visible-Light Photoredox Catalysis.
    Shaikh RS; Ghosh I; König B
    Chemistry; 2017 Sep; 23(50):12120-12124. PubMed ID: 28345143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visible-Light-Promoted C-H Arylation by Merging Palladium Catalysis with Organic Photoredox Catalysis.
    Jiang J; Zhang WM; Dai JJ; Xu J; Xu HJ
    J Org Chem; 2017 Apr; 82(7):3622-3630. PubMed ID: 28303717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperative catalysis with chiral Brønsted acid-Rh2(OAc)4: highly enantioselective three-component reactions of diazo compounds with alcohols and imines.
    Hu W; Xu X; Zhou J; Liu WJ; Huang H; Hu J; Yang L; Gong LZ
    J Am Chem Soc; 2008 Jun; 130(25):7782-3. PubMed ID: 18512907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct catalytic asymmetric addition of allyl cyanide to ketones via soft Lewis acid/hard Brønsted base/hard Lewis base catalysis.
    Yazaki R; Kumagai N; Shibasaki M
    J Am Chem Soc; 2010 Apr; 132(15):5522-31. PubMed ID: 20337453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The direct arylation of allylic sp(3) C-H bonds via organic and photoredox catalysis.
    Cuthbertson JD; MacMillan DW
    Nature; 2015 Mar; 519(7541):74-7. PubMed ID: 25739630
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-catalyzed ring-opening azidation and allylation of O-heterocycles.
    Sawama Y; Shibata K; Sawama Y; Takubo M; Monguchi Y; Krause N; Sajiki H
    Org Lett; 2013 Oct; 15(20):5282-5. PubMed ID: 24083667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of 4-Isoxazolines via Visible-Light Photoredox-Catalyzed [3 + 2] Cycloaddition of Oxaziridines with Alkynes.
    Jang GS; Lee J; Seo J; Woo SK
    Org Lett; 2017 Dec; 19(23):6448-6451. PubMed ID: 29154548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New approach to oximes through reduction of nitro compounds enabled by visible light photoredox catalysis.
    Cai S; Zhang S; Zhao Y; Wang DZ
    Org Lett; 2013 Jun; 15(11):2660-3. PubMed ID: 23706186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.