These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29781502)

  • 1. Bandgap scaling and negative differential resistance behavior of zigzag phosphorene antidot nanoribbons (ZPANRs).
    Carmel S; Pon A; Meenakshisundaram N; Ramesh R; Bhattacharyya A
    Phys Chem Chem Phys; 2018 May; 20(21):14855-14863. PubMed ID: 29781502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic structures and transport properties of SnS-SnSe nanoribbon lateral heterostructures.
    Yang Y; Zhou Y; Luo Z; Guo Y; Rao D; Yan X
    Phys Chem Chem Phys; 2019 May; 21(18):9296-9301. PubMed ID: 30964129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures.
    Zhang M; An Y; Sun Y; Wu D; Chen X; Wang T; Xu G; Wang K
    Phys Chem Chem Phys; 2017 Jul; 19(26):17210-17215. PubMed ID: 28639663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative differential resistance in armchair silicene nanoribbons.
    Manjanath A; Roy A; Samanta A; Singh AK
    Nanotechnology; 2017 Jul; 28(27):275402. PubMed ID: 28557802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling Effect of Phosphorene Nanoribbon - Uncovering the Origin of Asymmetric Current Transport.
    Lv Y; Chang S; Huang Q; Wang H; He J
    Sci Rep; 2016 Nov; 6():38009. PubMed ID: 27897230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenated cove-edge aluminum nitride nanoribbons for ultrascaled resonant tunneling diode applications: a computational DFT study.
    Kharwar S; Singh S; Kaushik BK
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36857765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons.
    Wu W; Guo W; Zeng XC
    Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons.
    Kumar J; Nemade HB; Giri PK
    Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-bias negative differential resistance in junction of a benzene between zigzag-edged phosphorene nanoribbons.
    Jia C; Cao L; Zhou X; Zhou B; Zhou G
    J Phys Condens Matter; 2018 Jul; 30(26):265301. PubMed ID: 29762129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gate-induced switch in zigzag graphene nanoribbons and charging effects.
    Cheraghchi H; Esmailzade H
    Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors.
    Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandstructure and Size-Scaling Effects in the Performance of Monolayer Black Phosphorus Nanodevices.
    Poljak M; Matić M
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic Green's function method.
    Amini M; Soltani M
    J Phys Condens Matter; 2019 May; 31(21):215301. PubMed ID: 30794998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of NO
    Nagarajan V; Chandiramouli R
    J Mol Graph Model; 2017 Aug; 75():365-374. PubMed ID: 28641209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT coupled with NEGF study of ultra-sensitive HCN and HNC gases detection and distinct I-V response based on phosphorene.
    Pang J; Yang Q; Ma X; Wang L; Tan C; Xiong D; Ye H; Chen X
    Phys Chem Chem Phys; 2017 Nov; 19(45):30852-30860. PubMed ID: 29134990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative differential resistance devices by using N-doped graphene nanoribbons.
    Huang J; Wang W; Li Q; Yang J
    J Chem Phys; 2014 Apr; 140(16):164703. PubMed ID: 24784295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.