These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions. Sanaeepur M Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399 [TBL] [Abstract][Full Text] [Related]
3. Electronic structures and transport properties of SnS-SnSe nanoribbon lateral heterostructures. Yang Y; Zhou Y; Luo Z; Guo Y; Rao D; Yan X Phys Chem Chem Phys; 2019 May; 21(18):9296-9301. PubMed ID: 30964129 [TBL] [Abstract][Full Text] [Related]
4. The electronic transport properties of zigzag phosphorene-like MX (M = Ge/Sn, X = S/Se) nanostructures. Zhang M; An Y; Sun Y; Wu D; Chen X; Wang T; Xu G; Wang K Phys Chem Chem Phys; 2017 Jul; 19(26):17210-17215. PubMed ID: 28639663 [TBL] [Abstract][Full Text] [Related]
5. Negative differential resistance in armchair silicene nanoribbons. Manjanath A; Roy A; Samanta A; Singh AK Nanotechnology; 2017 Jul; 28(27):275402. PubMed ID: 28557802 [TBL] [Abstract][Full Text] [Related]
6. Scaling Effect of Phosphorene Nanoribbon - Uncovering the Origin of Asymmetric Current Transport. Lv Y; Chang S; Huang Q; Wang H; He J Sci Rep; 2016 Nov; 6():38009. PubMed ID: 27897230 [TBL] [Abstract][Full Text] [Related]
7. Modulating the electronic structures of blue phosphorene towards spintronics. Lu XQ; Wang CK; Fu XX Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815 [TBL] [Abstract][Full Text] [Related]
8. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326 [TBL] [Abstract][Full Text] [Related]
10. Optimum Contact Configurations for Quasi-One-Dimensional Phosphorene Nanodevices. Poljak M; Matić M Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299662 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. Wu W; Guo W; Zeng XC Nanoscale; 2013 Oct; 5(19):9264-76. PubMed ID: 23949158 [TBL] [Abstract][Full Text] [Related]
12. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons. Kumar J; Nemade HB; Giri PK Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937 [TBL] [Abstract][Full Text] [Related]
13. Low-bias negative differential resistance in junction of a benzene between zigzag-edged phosphorene nanoribbons. Jia C; Cao L; Zhou X; Zhou B; Zhou G J Phys Condens Matter; 2018 Jul; 30(26):265301. PubMed ID: 29762129 [TBL] [Abstract][Full Text] [Related]
14. A gate-induced switch in zigzag graphene nanoribbons and charging effects. Cheraghchi H; Esmailzade H Nanotechnology; 2010 May; 21(20):205306. PubMed ID: 20418607 [TBL] [Abstract][Full Text] [Related]
15. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors. Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483 [TBL] [Abstract][Full Text] [Related]
16. Bandstructure and Size-Scaling Effects in the Performance of Monolayer Black Phosphorus Nanodevices. Poljak M; Matić M Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009387 [TBL] [Abstract][Full Text] [Related]
17. Electronic Structure and I-V Characteristics of InSe Nanoribbons. Yao AL; Wang XF; Liu YS; Sun YN Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093 [TBL] [Abstract][Full Text] [Related]
18. Electronic structures, transport properties, and optical absorption of bilayer blue phosphorene nanoribbons. Gong LJ; Shi HL; Yang J; Han QZ; Ren YH; He SY; Zhao YH; Jiang ZT Phys Chem Chem Phys; 2023 Aug; 25(33):22487-22496. PubMed ID: 37581353 [TBL] [Abstract][Full Text] [Related]
19. Signature of excitonic insulators in phosphorene nanoribbons. Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299 [TBL] [Abstract][Full Text] [Related]
20. Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic Green's function method. Amini M; Soltani M J Phys Condens Matter; 2019 May; 31(21):215301. PubMed ID: 30794998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]