These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 29781601)

  • 1. Artificial Plasmonic Molecules and Their Interaction with Real Molecules.
    Haran G; Chuntonov L
    Chem Rev; 2018 Jun; 118(11):5539-5580. PubMed ID: 29781601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
    Gruenke NL; Cardinal MF; McAnally MO; Frontiera RR; Schatz GC; Van Duyne RP
    Chem Soc Rev; 2016 Apr; 45(8):2263-90. PubMed ID: 26848784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry-Pérot resonators to plasmonic nano-antennas.
    Kern AM; Zhang D; Brecht M; Chizhik AI; Failla AV; Wackenhut F; Meixner AJ
    Chem Soc Rev; 2014 Feb; 43(4):1263-86. PubMed ID: 24365864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer.
    Dadosh T; Sperling J; Bryant GW; Breslow R; Shegai T; Dyshel M; Haran G; Bar-Joseph I
    ACS Nano; 2009 Jul; 3(7):1988-94. PubMed ID: 19534506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral signatures of charge transfer in assemblies of molecularly-linked plasmonic nanoparticles.
    Lerch S; Reinhard BM
    Int J Mod Phys B; 2017 Sep; 31(24):. PubMed ID: 29391660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities.
    Li L; Cai W; Du C; Guan Z; Xiang Y; Ma Z; Wu W; Ren M; Zhang X; Tang A; Xu J
    Nanoscale; 2018 Dec; 10(47):22357-22361. PubMed ID: 30474670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique Electronic Excitations at Highly Localized Plasmonic Field.
    Minamimoto H; Zhou R; Fukushima T; Murakoshi K
    Acc Chem Res; 2022 Mar; 55(6):809-818. PubMed ID: 35184549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyte Co-localization at Electromagnetic Gap Hot-Spots for Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies.
    Rastogi R; Arianfard H; Moss D; Juodkazis S; Adam PM; Krishnamoorthy S
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9113-9121. PubMed ID: 33583180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Core-Shell Nanomaterials and their Applications in Spectroscopies.
    Zhang YJ; Radjenovic PM; Zhou XS; Zhang H; Yao JL; Li JF
    Adv Mater; 2021 Dec; 33(50):e2005900. PubMed ID: 33811422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime.
    Wurtz GA; Dickson W; O'Connor D; Atkinson R; Hendren W; Evans P; Pollard R; Zayats AV
    Opt Express; 2008 May; 16(10):7460-70. PubMed ID: 18545451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic theories of surface-enhanced Raman spectroscopy.
    Ding SY; You EM; Tian ZQ; Moskovits M
    Chem Soc Rev; 2017 Jul; 46(13):4042-4076. PubMed ID: 28660954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembled 3D Nanosplit Rings for Plasmon-Enhanced Optofluidic Sensing.
    Dai C; Lin Z; Agarwal K; Mikhael C; Aich A; Gupta K; Cho JH
    Nano Lett; 2020 Sep; 20(9):6697-6705. PubMed ID: 32808792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Assemblies for Real-Time Single-Molecule Biosensing.
    Armstrong RE; Horáček M; Zijlstra P
    Small; 2020 Dec; 16(52):e2003934. PubMed ID: 33258287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering.
    Zhang Y; Shen J; Xie Z; Dou X; Min C; Lei T; Liu J; Zhu S; Yuan X
    Nanoscale; 2017 Aug; 9(30):10694-10700. PubMed ID: 28678267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic placement of plasmonic hotspots for super-resolution surface-enhanced Raman scattering.
    Ertsgaard CT; McKoskey RM; Rich IS; Lindquist NC
    ACS Nano; 2014 Oct; 8(10):10941-6. PubMed ID: 25268457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.