These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29782163)

  • 1. Stoichio-Kinetic Modeling of Fenton Chemistry in a Meat-Mimetic Aqueous-Phase Medium.
    Oueslati K; Promeyrat A; Gatellier P; Daudin JD; Kondjoyan A
    J Agric Food Chem; 2018 Jun; 66(23):5892-5900. PubMed ID: 29782163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation kinetics of degradation of 1,4-dioxane in aqueous solution by H2O2/Fe(II) system.
    Ghosh P; Samanta AN; Ray S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):395-9. PubMed ID: 20390884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II).
    Ruipérez F; Mujika JI; Ugalde JM; Exley C; Lopez X
    J Inorg Biochem; 2012 Dec; 117():118-23. PubMed ID: 23085591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the Fenton process in meat digestion as assessed using an in vitro gastro-intestinal model.
    Oueslati K; de La Pomélie D; Santé-Lhoutellier V; Gatellier P
    Food Chem; 2016 Oct; 209():43-9. PubMed ID: 27173532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction.
    Nakagawa Y; Hori H; Yamamoto I; Terada H
    Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Fe(III)-ligand properties on effectiveness of modified photo-Fenton processes.
    Aplin R; Feitz AJ; Waite TD
    Water Sci Technol; 2001; 44(5):23-30. PubMed ID: 11695464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds.
    Deguillaume L; Leriche M; Chaumerliac N
    Chemosphere; 2005 Jul; 60(5):718-24. PubMed ID: 15963810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles.
    Chen L; Ma J; Li X; Zhang J; Fang J; Guan Y; Xie P
    Environ Sci Technol; 2011 May; 45(9):3925-30. PubMed ID: 21469678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces.
    Walter M; Schenkeveld WDC; Geroldinger G; Gille L; Reissner M; Kraemer SM
    Part Fibre Toxicol; 2020 Jan; 17(1):3. PubMed ID: 31959185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study.
    Kusić H; Koprivanac N; Bozić AL; Selanec I
    J Hazard Mater; 2006 Aug; 136(3):632-44. PubMed ID: 16466856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.
    Shi F; Zhang P; Mao Y; Wang C; Zheng M; Zhao Z
    Biochem Biophys Res Commun; 2017 Jan; 483(1):159-164. PubMed ID: 28042034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mineralization of herbicides imazapyr and imazaquin in aqueous medium by, fenton, photo-fenton and electro-fenton processes.
    Kaichouh G; Oturan N; Oturan MA; El Hourch A; El Kacemi K
    Environ Technol; 2008 May; 29(5):489-96. PubMed ID: 18661732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fenton chemistry: an introduction.
    Wardman P; Candeias LP
    Radiat Res; 1996 May; 145(5):523-31. PubMed ID: 8619017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pyrophosphate, tripolyphosphate and ATP on the rate of the Fenton reaction.
    Rachmilovich-Calis S; Masarwa A; Meyerstein N; Meyerstein D
    J Inorg Biochem; 2011 May; 105(5):669-74. PubMed ID: 21450270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions.
    Miller CJ; Rose AL; Waite TD
    Environ Sci Technol; 2013 Jan; 47(2):829-35. PubMed ID: 23231429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide-dependent reduction of free Fe(3+) and release of Fe(2+) from ferritin by the physiologically-occurring Cu(I)-glutathione complex.
    Aliaga ME; Carrasco-Pozo C; López-Alarcón C; Olea-Azar C; Speisky H
    Bioorg Med Chem; 2011 Jan; 19(1):534-41. PubMed ID: 21115254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.