These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29782168)

  • 1. Rapid Aqueous-Phase Hydrolysis of Ester Hydroperoxides Arising from Criegee Intermediates and Organic Acids.
    Zhao R; Kenseth CM; Huang Y; Dalleska NF; Kuang XM; Chen J; Paulson SE; Seinfeld JH
    J Phys Chem A; 2018 Jun; 122(23):5190-5201. PubMed ID: 29782168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous-phase fates of α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with alcohols.
    Hu M; Qiu J; Tonokura K; Enami S
    Phys Chem Chem Phys; 2021 Mar; 23(8):4605-4614. PubMed ID: 33620039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Characterization of Organic Peroxides from Monoterpene-Derived Criegee Intermediates in Secondary Organic Aerosol.
    Li K; Resch J; Kalberer M
    Environ Sci Technol; 2024 Feb; 58(7):3322-3331. PubMed ID: 38324703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fates of Organic Hydroperoxides in Atmospheric Condensed Phases.
    Enami S
    J Phys Chem A; 2021 Jun; 125(21):4513-4523. PubMed ID: 33904735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis.
    Sakamoto Y; Inomata S; Hirokawa J
    J Phys Chem A; 2013 Dec; 117(48):12912-21. PubMed ID: 24200348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decomposition mechanism of α-alkoxyalkyl-hydroperoxides in the liquid phase: temperature dependent kinetics and theoretical calculations.
    Hu M; Chen K; Qiu J; Lin YH; Tonokura K; Enami S
    Environ Sci Atmos; 2022 Mar; 2(2):241-251. PubMed ID: 35419522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decomposition of multifunctionalized α-alkoxyalkyl-hydroperoxides derived from the reactions of Criegee intermediates with diols in liquid phases.
    Endo Y; Sakamoto Y; Kajii Y; Enami S
    Phys Chem Chem Phys; 2022 May; 24(19):11562-11572. PubMed ID: 35506905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.
    Aljawhary D; Zhao R; Lee AK; Wang C; Abbatt JP
    J Phys Chem A; 2016 Mar; 120(9):1395-407. PubMed ID: 26299576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water vapour effects on secondary organic aerosol formation in isoprene ozonolysis.
    Sakamoto Y; Yajima R; Inomata S; Hirokawa J
    Phys Chem Chem Phys; 2017 Jan; 19(4):3165-3175. PubMed ID: 28083573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature Dependence of Aqueous-Phase Decomposition of α-Hydroxyalkyl-Hydroperoxides.
    Hu M; Chen K; Qiu J; Lin YH; Tonokura K; Enami S
    J Phys Chem A; 2020 Dec; 124(49):10288-10295. PubMed ID: 33231452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air-water/acetonitrile interfaces.
    Xiao P; Yang JJ; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jun; 20(23):16138-16150. PubMed ID: 29854994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the Potential for Oligomer Formation from the Reactions of Lactones in Secondary Organic Aerosols.
    Jiang K; Hill DR; Elrod MJ
    J Phys Chem A; 2018 Jan; 122(1):292-302. PubMed ID: 29219309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.
    Zhao Y; Wingen LM; Perraud V; Greaves J; Finlayson-Pitts BJ
    Phys Chem Chem Phys; 2015 May; 17(19):12500-14. PubMed ID: 25899614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous benzene-diols react with an organic triplet excited state and hydroxyl radical to form secondary organic aerosol.
    Smith JD; Kinney H; Anastasio C
    Phys Chem Chem Phys; 2015 Apr; 17(15):10227-37. PubMed ID: 25797024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity of Monoterpene Criegee Intermediates at Gas-Liquid Interfaces.
    Qiu J; Ishizuka S; Tonokura K; Colussi AJ; Enami S
    J Phys Chem A; 2018 Oct; 122(39):7910-7917. PubMed ID: 30180579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of reactions between Criegee intermediates and methanesulfonic acid at the air-water interface.
    Ma X; Zhao X; Huang Z; Wang J; Lv G; Xu F; Zhang Q; Wang W
    Sci Total Environ; 2020 Mar; 707():135804. PubMed ID: 31862431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of gas-phase ozonolysis of sabinene in the atmosphere.
    Wang L; Wang L
    Phys Chem Chem Phys; 2017 Sep; 19(35):24209-24218. PubMed ID: 28848955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolytic processing of secondary organic aerosols dissolved in cloud droplets.
    Bateman AP; Nizkorodov SA; Laskin J; Laskin A
    Phys Chem Chem Phys; 2011 Jul; 13(26):12199-212. PubMed ID: 21617794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of Perfluorooctanoic Acid with Criegee Intermediates and Implications for the Atmospheric Fate of Perfluorocarboxylic Acids.
    Taatjes CA; Khan MAH; Eskola AJ; Percival CJ; Osborn DL; Wallington TJ; Shallcross DE
    Environ Sci Technol; 2019 Feb; 53(3):1245-1251. PubMed ID: 30589541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions of Criegee Intermediates with Benzoic Acid at the Gas/Liquid Interface.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    J Phys Chem A; 2018 Aug; 122(30):6303-6310. PubMed ID: 29989413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.