These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29782613)

  • 1. On the optimization of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry.
    Chung M; Radacsi N; Robert C; McCarthy ED; Callanan A; Conlisk N; Hoskins PR; Koutsos V
    3D Print Med; 2018; 4(1):2. PubMed ID: 29782613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-Influence of Nanofiller Content and 3D Printing Parameters on Mechanical Properties of Thermoplastic Polyurethane (TPU)/Halloysite Nanotube (HNT) Nanocomposites.
    Nugroho WT; Dong Y; Pramanik A; Zhang Z; Ramakrishna S
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method.
    Wang J; Yang B; Lin X; Gao L; Liu T; Lu Y; Wang R
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33120954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a Medical Grade Thermoplastic Polyurethane for the Manufacture of an Implantable Medical Device: The Impact of FDM 3D-Printing and Gamma Sterilization.
    M'Bengue MS; Mesnard T; Chai F; Maton M; Gaucher V; Tabary N; García-Fernandez MJ; Sobocinski J; Martel B; Blanchemain N
    Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of deformable patient-specific AAA models by material casting techniques.
    Antonuccio MN; Gasparotti E; Bardi F; Monteleone A; This A; Rouet L; Avril S; Celi S
    Front Cardiovasc Med; 2023; 10():1141623. PubMed ID: 37753165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Brush-Spin-Coating Method for Fabricating In Vitro Patient-Specific Vascular Models by Coupling 3D-Printing.
    Chi QZ; Mu LZ; He Y; Luan Y; Jing YC
    Cardiovasc Eng Technol; 2021 Apr; 12(2):200-214. PubMed ID: 33263929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endovascular repair of abdominal aortic aneurysm: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2002; 2(1):1-46. PubMed ID: 23074438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of FDM 3D printing process parameters to produce haemodialysis curcumin-loaded vascular grafts.
    Basile S; Mathew E; Genta I; Conti B; Dorati R; Lamprou DA
    Drug Deliv Transl Res; 2023 Aug; 13(8):2058-2071. PubMed ID: 34642844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utility of 3D printed abdominal aortic aneurysm phantoms: a systematic review.
    Coles-Black J; Bolton D; Robinson D; Chuen J
    ANZ J Surg; 2021 Sep; 91(9):1673-1681. PubMed ID: 33825293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty quantification in dimensions dataset of additive manufactured NIST standard test artifact.
    Mac G; Pearce H; Karri R; Gupta N
    Data Brief; 2021 Oct; 38():107286. PubMed ID: 34522727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets.
    Goyanes A; Buanz AB; Hatton GB; Gaisford S; Basit AW
    Eur J Pharm Biopharm; 2015 Jan; 89():157-62. PubMed ID: 25497178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of fused deposition modeling 3D printers for pharmaceutical and medical applications.
    Feuerbach T; Kock S; Thommes M
    Pharm Dev Technol; 2018 Dec; 23(10):1136-1145. PubMed ID: 29938558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medical-Grade PCL Based Polyurethane System for FDM 3D Printing-Characterization and Fabrication.
    Haryńska A; Kucinska-Lipka J; Sulowska A; Gubanska I; Kostrzewa M; Janik H
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30884832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Precision and Accuracy of 3D Printing of Tablets by Fused Deposition Modelling.
    Macedo J; da Costa NF; Vanhoorne V; Vervaet C; Pinto JF
    J Pharm Sci; 2022 Oct; 111(10):2814-2826. PubMed ID: 35577114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Thermoplastic Elastomers: Role of the Chemical Composition and Printing Parameters in the Production of Parts with Controlled Energy Absorption and Damping Capacity.
    León-Calero M; Reyburn Valés SC; Marcos-Fernández Á; Rodríguez-Hernandez J
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacturing flexible vascular models for cardiovascular surgery planning and endovascular procedure simulations: An approach to segmentation and post-processing with open-source software and end-user 3D printers.
    Kaufmann R; Deutschmann M; Meissnitzer M; Scharinger B; Hergan K; Vötsch A; Dinges C; Hecht S
    Int J Bioprint; 2023; 9(2):669. PubMed ID: 37065673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Design Approach to Optimise Secure Remote Three-Dimensional (3D) Printing: A Proof-of-Concept Study towards Advancement in Telemedicine.
    Kok XW; Singh A; Raimi-Abraham BT
    Healthcare (Basel); 2022 Jun; 10(6):. PubMed ID: 35742165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printed Thermoelectric Polyurethane/Multiwalled Carbon Nanotube Nanocomposites: A Novel Approach towards the Fabrication of Flexible and Stretchable Organic Thermoelectrics.
    Tzounis L; Petousis M; Grammatikos S; Vidakis N
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32604960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.