These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29782615)

  • 1. Feasibility study applying a parametric model as the design generator for 3D-printed orthosis for fracture immobilization.
    Li J; Tanaka H
    3D Print Med; 2018; 4(1):1. PubMed ID: 29782615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Customized designs of short thumb orthoses using 3D hand parametric models.
    Chu CH; Wang IJ; Sun JR; Liu CH
    Assist Technol; 2022 Jan; 34(1):104-111. PubMed ID: 31891329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foot Orthosis and Sensorized House Slipper by 3D Printing.
    Brognara L; Fantini M; Morellato K; Graziani G; Baldini N; Cauli O
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary effectiveness of 3D-printed orthoses in chronic hand conditions: study protocol for a non-randomised interventional feasibility study.
    Oud T; Tuijtelaars J; Bogaards H; Nollet F; Brehm MA
    BMJ Open; 2023 Apr; 13(4):e069424. PubMed ID: 37024252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated 3D-printed finger orthosis versus manual orthosis preparation by occupational therapy students: Preparation time, product weight, and user satisfaction.
    Portnoy S; Barmin N; Elimelech M; Assaly B; Oren S; Shanan R; Levanon Y
    J Hand Ther; 2020; 33(2):174-179. PubMed ID: 32423844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of 3D printed orthoses for musculoskeletal conditions of the upper extremity: A systematic review.
    Schwartz DA; Schofield KA
    J Hand Ther; 2023; 36(1):166-178. PubMed ID: 34819255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing technology applied to orthosis manufacturing: narrative review.
    Choo YJ; Boudier-Revéret M; Chang MC
    Ann Palliat Med; 2020 Nov; 9(6):4262-4270. PubMed ID: 33040564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid customization system for 3D-printed splint using programmable modeling technique - a practical approach.
    Li J; Tanaka H
    3D Print Med; 2018; 4(1):5. PubMed ID: 29882529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a segmented custom ankle foot orthosis with custom-made metal strut and 3D-printed footplate and calf shell.
    Funes-Lora MA; Posh R; Wensman J; Shih AJ
    Prosthet Orthot Int; 2022 Feb; 46(1):37-41. PubMed ID: 34897204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production Time and User Satisfaction of 3-Dimensional Printed Orthoses For Chronic Hand Conditions Compared With Conventional Orthoses: A Prospective Case Series.
    Oud T; Kerkum Y; de Groot P; Gijsbers H; Nollet F; Brehm MA
    J Rehabil Med Clin Commun; 2021; 4():1000048. PubMed ID: 33884150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee orthoses for treating patellofemoral pain syndrome.
    Smith TO; Drew BT; Meek TH; Clark AB
    Cochrane Database Syst Rev; 2015 Dec; 2015(12):CD010513. PubMed ID: 26645724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Critical Analysis of a Hand Orthosis Reverse Engineering and 3D Printing Process.
    Baronio G; Harran S; Signoroni A
    Appl Bionics Biomech; 2016; 2016():8347478. PubMed ID: 27594781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methodology and feasibility of a 3D printed assistive technology intervention.
    Schwartz JK; Fermin A; Fine K; Iglesias N; Pivarnik D; Struck S; Varela N; Janes WE
    Disabil Rehabil Assist Technol; 2020 Feb; 15(2):141-147. PubMed ID: 30663439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized upper limb orthosis necessitates variety of tools during the development process: hemiplegic child case study.
    Thomann G; de Carvalho VA
    Disabil Rehabil Assist Technol; 2021 Feb; 16(2):188-195. PubMed ID: 31361170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A digital workflow for design and fabrication of bespoke orthoses using 3D scanning and 3D printing, a patient-based case study.
    Hale L; Linley E; Kalaskar DM
    Sci Rep; 2020 Apr; 10(1):7028. PubMed ID: 32341404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of Personalized Cervical Fixation Orthosis Based on 3D Printing Technology.
    Xu Y; Li X; Chang Y; Wang Y; Che L; Shi G; Niu X; Wang H; Li X; He Y; Pei B; Wei G
    Appl Bionics Biomech; 2022; 2022():8243128. PubMed ID: 35535322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of a simplified 3D-printed implant surgical guide.
    Kim T; Lee S; Kim GB; Hong D; Kwon J; Park JW; Kim N
    J Prosthet Dent; 2020 Aug; 124(2):195-201.e2. PubMed ID: 31753464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An alternative to plaster cast treatment in a pediatric trauma center using the CAD/CAM technology to manufacture customized three-dimensional-printed orthoses in a totally hospital context: a feasibility study.
    Guida P; Casaburi A; Busiello T; Lamberti D; Sorrentino A; Iuppariello L; D'Albore M; Colella F; Clemente F
    J Pediatr Orthop B; 2019 May; 28(3):248-255. PubMed ID: 30768580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study.
    Dombroski CE; Balsdon ME; Froats A
    BMC Res Notes; 2014 Jul; 7():443. PubMed ID: 25015013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three Dimensionally Printed Versus Conventional Casts in Pediatric Wrist Fractures.
    Skibicki HE; Katt BM; Lutsky K; Wang ML; McEntee R; Vaccaro AR; Beredjiklian P; Rivlin M
    Cureus; 2021 Oct; 13(10):e19090. PubMed ID: 34868748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.