These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29782702)

  • 1. Unique Tube-Ring Interactions: Complexation of Single-Walled Carbon Nanotubes with Cycloparaphenyleneacetylenes.
    Miki K; Saiki K; Umeyama T; Baek J; Noda T; Imahori H; Sato Y; Suenaga K; Ohe K
    Small; 2018 Jun; 14(26):e1800720. PubMed ID: 29782702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Supramolecular Chemistry of Strained Carbon Nanohoops.
    Xu Y; von Delius M
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):559-573. PubMed ID: 31190449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large π-Extended and Curved Carbon Nanorings as Carbon Nanotube Segments.
    Wang J; Zhang X; Jia H; Wang S; Du P
    Acc Chem Res; 2021 Nov; 54(22):4178-4190. PubMed ID: 34713698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.
    Singh P; Toma FM; Kumar J; Venkatesh V; Raya J; Prato M; Verma S; Bianco A
    Chemistry; 2011 Jun; 17(24):6772-80. PubMed ID: 21542041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically interlocked single-wall carbon nanotubes.
    de Juan A; Pouillon Y; Ruiz-González L; Torres-Pardo A; Casado S; Martín N; Rubio Á; Pérez EM
    Angew Chem Int Ed Engl; 2014 May; 53(21):5394-400. PubMed ID: 24729452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic properties of single-walled carbon nanotubes inside cyclic supermolecules.
    Akola J; Rytkönen K; Manninen M
    J Phys Chem B; 2006 Mar; 110(11):5186-90. PubMed ID: 16539446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Supramolecular Polymer Conformation for Efficient Carbon Nanotube Sorting.
    Gao TZ; Sun Z; Yan X; Wu HC; Yan H; Bao Z
    Small; 2020 Jul; 16(26):e2000923. PubMed ID: 32500637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes.
    Omachi H; Segawa Y; Itami K
    Acc Chem Res; 2012 Aug; 45(8):1378-89. PubMed ID: 22587963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs.
    Rozhin P; Kralj S; Soula B; Marchesan S; Flahaut E
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization.
    Li W; Gao C
    Langmuir; 2007 Apr; 23(8):4575-82. PubMed ID: 17358086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between gallium atoms and the inner walls of single-walled carbon nanotubes.
    Xu B; Pan BC
    Nanotechnology; 2008 Feb; 19(7):075706. PubMed ID: 21817654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow structure of water in carbon nanotubes: poiseuille type or plug-like?
    Hanasaki I; Nakatani A
    J Chem Phys; 2006 Apr; 124(14):144708. PubMed ID: 16626232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Large π-Extended Carbon Nanoring Based on Nanographene Units: Bottom-Up Synthesis, Photophysical Properties, and Selective Complexation with Fullerene C
    Lu D; Zhuang G; Wu H; Wang S; Yang S; Du P
    Angew Chem Int Ed Engl; 2017 Jan; 56(1):158-162. PubMed ID: 27910250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endohedral and exohedral complexes of substituted benzenes with carbon nanotubes and graphene.
    Munusamy E; Wheeler SE
    J Chem Phys; 2013 Sep; 139(9):094703. PubMed ID: 24028126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties.
    Caoduro C; Hervouet E; Girard-Thernier C; Gharbi T; Boulahdour H; Delage-Mourroux R; Pudlo M
    Acta Biomater; 2017 Feb; 49():36-44. PubMed ID: 27826000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putting Rings around Carbon Nanotubes.
    Pérez EM
    Chemistry; 2017 Sep; 23(52):12681-12689. PubMed ID: 28718919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.