These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29782706)

  • 1. Biological Stimulus-Driven Assembly/Disassembly of Functional Nanoparticles for Targeted Delivery, Controlled Activation, and Bioelimination.
    Hu X; Li F; Wang S; Xia F; Ling D
    Adv Healthc Mater; 2018 Oct; 7(20):e1800359. PubMed ID: 29782706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.
    Karimi M; Ghasemi A; Sahandi Zangabad P; Rahighi R; Moosavi Basri SM; Mirshekari H; Amiri M; Shafaei Pishabad Z; Aslani A; Bozorgomid M; Ghosh D; Beyzavi A; Vaseghi A; Aref AR; Haghani L; Bahrami S; Hamblin MR
    Chem Soc Rev; 2016 Mar; 45(5):1457-501. PubMed ID: 26776487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery.
    Yu L; Chen Y; Lin H; Du W; Chen H; Shi J
    Biomaterials; 2018 Apr; 161():292-305. PubMed ID: 29427925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in pH-Sensitive Polymeric Nanoparticles for Smart Drug Delivery in Cancer Therapy.
    Lim EK; Chung BH; Chung SJ
    Curr Drug Targets; 2018 Feb; 19(4):300-317. PubMed ID: 27262486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography.
    Feng Q; Zhang Y; Zhang W; Shan X; Yuan Y; Zhang H; Hou L; Zhang Z
    Acta Biomater; 2016 Jul; 38():129-42. PubMed ID: 27090593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoporous silica nanoparticles in nanomedicine applications.
    Manzano M; Vallet-Regí M
    J Mater Sci Mater Med; 2018 May; 29(5):65. PubMed ID: 29737405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-Responsive Nanomedicines for Disease Diagnosis and Treatment.
    Liu G; Lovell JF; Zhang L; Zhang Y
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32887466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine.
    Ambrogio MW; Thomas CR; Zhao YL; Zink JI; Stoddart JF
    Acc Chem Res; 2011 Oct; 44(10):903-13. PubMed ID: 21675720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-responsive targeted nanomicelles for effective cancer therapy.
    Muthu MS; Rajesh CV; Mishra A; Singh S
    Nanomedicine (Lond); 2009 Aug; 4(6):657-67. PubMed ID: 19663594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition-property relationships in multifunctional hollow mesoporous carbon nanosystems for PH-responsive magnetic resonance imaging and on-demand drug release.
    Zhang S; Qian X; Zhang L; Peng W; Chen Y
    Nanoscale; 2015 May; 7(17):7632-43. PubMed ID: 25785502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium phosphate-based nanosystems for advanced targeted nanomedicine.
    Degli Esposti L; Carella F; Adamiano A; Tampieri A; Iafisco M
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1223-1238. PubMed ID: 29528248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.
    Ling D; Lee N; Hyeon T
    Acc Chem Res; 2015 May; 48(5):1276-85. PubMed ID: 25922976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive approach of hybrid nanoplatforms in drug delivery and theranostics to combat cancer.
    Thorat ND; Townley HE; Patil RM; Tofail SAM; Bauer J
    Drug Discov Today; 2020 Jul; 25(7):1245-1252. PubMed ID: 32371139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.
    Cheng R; Meng F; Deng C; Klok HA; Zhong Z
    Biomaterials; 2013 May; 34(14):3647-57. PubMed ID: 23415642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications.
    Ruttala HB; Ramasamy T; Madeshwaran T; Hiep TT; Kandasamy U; Oh KT; Choi HG; Yong CS; Kim JO
    Arch Pharm Res; 2018 Feb; 41(2):111-129. PubMed ID: 29214601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents.
    Karimi M; Eslami M; Sahandi-Zangabad P; Mirab F; Farajisafiloo N; Shafaei Z; Ghosh D; Bozorgomid M; Dashkhaneh F; Hamblin MR
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016 Sep; 8(5):696-716. PubMed ID: 26762467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-sensitive nano-systems for drug delivery in cancer therapy.
    Liu J; Huang Y; Kumar A; Tan A; Jin S; Mozhi A; Liang XJ
    Biotechnol Adv; 2014; 32(4):693-710. PubMed ID: 24309541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Insights into Effective Nanomaterials and Biomacromolecules Conjugation in Advanced Drug Targeting.
    Azandaryani AH; Kashanian S; Jamshidnejad-Tosaramandani T
    Curr Pharm Biotechnol; 2019; 20(7):526-541. PubMed ID: 31038063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.