These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 29782823)

  • 1. Syntheses of C33-, C35-, and C39-peridinin and their spectral characteristics.
    Kajikawa T; Hasegawa S; Iwashita T; Kusumoto T; Hashimoto H; Niedzwiedzki DM; Frank HA; Katsumura S
    Org Lett; 2009 Nov; 11(21):5006-9. PubMed ID: 19795872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state.
    Zigmantas D; Hiller RG; Sundstrom V; Polivka T
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16760-5. PubMed ID: 12486228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering dark multichromophoric states in Peridinin-Chlorophyll-Protein.
    Taffet EJ; Fassioli F; Toa ZSD; Beljonne D; Scholes GD
    J R Soc Interface; 2020 Mar; 17(164):20190736. PubMed ID: 32183641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding/unravelling carotenoid excited singlet states.
    Hashimoto H; Uragami C; Yukihira N; Gardiner AT; Cogdell RJ
    J R Soc Interface; 2018 Apr; 15(141):. PubMed ID: 29643225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Energy Transfer Yield between Carotenoids and Chlorophylls in Peridinin Chlorophyll
    Tumbarello F; Marcolin G; Fresch E; Hofmann E; Carbonera D; Collini E
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Violaxanthin and Zeaxanthin May Replace Lutein at the L1 Site of LHCII, Conserving the Interactions with Surrounding Chlorophylls and the Capability of Triplet-Triplet Energy Transfer.
    Carbonera D; Agostini A; Bortolus M; Dall'Osto L; Bassi R
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopy of the peridinin-chlorophyll-a protein: insight into light-harvesting strategy of marine algae.
    Polívka T; Hiller RG; Frank HA
    Arch Biochem Biophys; 2007 Feb; 458(2):111-20. PubMed ID: 17098207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of native and refolded peridinin-chlorophyll-proteins from dinoflagellates.
    Schulte T; Johanning S; Hofmann E
    Eur J Cell Biol; 2010 Dec; 89(12):990-7. PubMed ID: 20846743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triplet-triplet energy transfer in Peridinin-Chlorophyll a-protein reconstituted with Chl a and Chl d as revealed by optically detected magnetic resonance and pulse EPR: comparison with the native PCP complex from Amphidinium carterae.
    Di Valentin M; Agostini G; Salvadori E; Ceola S; Giacometti GM; Hiller RG; Carbonera D
    Biochim Biophys Acta; 2009 Mar; 1787(3):168-75. PubMed ID: 19150328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse ENDOR and density functional theory on the peridinin triplet state involved in the photo-protective mechanism in the peridinin-chlorophyll a-protein from Amphidinium carterae.
    Di Valentin M; Ceola S; Agostini G; Giacometti GM; Angerhofer A; Crescenzi O; Barone V; Carbonera D
    Biochim Biophys Acta; 2008 Mar; 1777(3):295-307. PubMed ID: 18243124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distance measurements in peridinin-chlorophyll a-protein by light-induced PELDOR spectroscopy. Analysis of triplet state localization.
    Di Valentin M; Dal Farra MG; Galazzo L; Albertini M; Schulte T; Hofmann E; Carbonera D
    Biochim Biophys Acta; 2016 Dec; 1857(12):1909-1916. PubMed ID: 27659505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triplet-triplet energy transfer in the major intrinsic light-harvesting complex of Amphidinium carterae as revealed by ODMR and EPR spectroscopies.
    Di Valentin M; Salvadori E; Agostini G; Biasibetti F; Ceola S; Hiller R; Giacometti GM; Carbonera D
    Biochim Biophys Acta; 2010 Oct; 1797(10):1759-67. PubMed ID: 20599677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic properties of the peridinins involved in chlorophyll triplet quenching in high-salt peridinin-chlorophyll a-protein from Amphidinium carterae as revealed by optically detected magnetic resonance, pulse EPR and pulse ENDOR spectroscopies.
    Di Valentin M; Ceola S; Salvadori E; Agostini G; Giacometti GM; Carbonera D
    Biochim Biophys Acta; 2008 Oct; 1777(10):1355-63. PubMed ID: 18602887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changing the site energy of per-614 in the Peridinin-chlorophyll a-protein does not alter its capability of chlorophyll triplet quenching.
    Agostini A; Niklas J; Schulte T; Di Valentin M; Bortolus M; Hofmann E; Lubitz W; Carbonera D
    Biochim Biophys Acta Bioenerg; 2018 Aug; 1859(8):612-618. PubMed ID: 29782823
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.