These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29782823)

  • 1. Changing the site energy of per-614 in the Peridinin-chlorophyll a-protein does not alter its capability of chlorophyll triplet quenching.
    Agostini A; Niklas J; Schulte T; Di Valentin M; Bortolus M; Hofmann E; Lubitz W; Carbonera D
    Biochim Biophys Acta Bioenerg; 2018 Aug; 1859(8):612-618. PubMed ID: 29782823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplet-triplet energy transfer in Peridinin-Chlorophyll a-protein reconstituted with Chl a and Chl d as revealed by optically detected magnetic resonance and pulse EPR: comparison with the native PCP complex from Amphidinium carterae.
    Di Valentin M; Agostini G; Salvadori E; Ceola S; Giacometti GM; Hiller RG; Carbonera D
    Biochim Biophys Acta; 2009 Mar; 1787(3):168-75. PubMed ID: 19150328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulse ENDOR and density functional theory on the peridinin triplet state involved in the photo-protective mechanism in the peridinin-chlorophyll a-protein from Amphidinium carterae.
    Di Valentin M; Ceola S; Agostini G; Giacometti GM; Angerhofer A; Crescenzi O; Barone V; Carbonera D
    Biochim Biophys Acta; 2008 Mar; 1777(3):295-307. PubMed ID: 18243124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance measurements in peridinin-chlorophyll a-protein by light-induced PELDOR spectroscopy. Analysis of triplet state localization.
    Di Valentin M; Dal Farra MG; Galazzo L; Albertini M; Schulte T; Hofmann E; Carbonera D
    Biochim Biophys Acta; 2016 Dec; 1857(12):1909-1916. PubMed ID: 27659505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triplet-triplet energy transfer in the major intrinsic light-harvesting complex of Amphidinium carterae as revealed by ODMR and EPR spectroscopies.
    Di Valentin M; Salvadori E; Agostini G; Biasibetti F; Ceola S; Hiller R; Giacometti GM; Carbonera D
    Biochim Biophys Acta; 2010 Oct; 1797(10):1759-67. PubMed ID: 20599677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic properties of the peridinins involved in chlorophyll triplet quenching in high-salt peridinin-chlorophyll a-protein from Amphidinium carterae as revealed by optically detected magnetic resonance, pulse EPR and pulse ENDOR spectroscopies.
    Di Valentin M; Ceola S; Salvadori E; Agostini G; Giacometti GM; Carbonera D
    Biochim Biophys Acta; 2008 Oct; 1777(10):1355-63. PubMed ID: 18602887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification by time-resolved EPR of the peridinins directly involved in chlorophyll triplet quenching in the peridinin-chlorophyll a-protein from Amphidinium carterae.
    Di Valentin M; Ceola S; Salvadori E; Agostini G; Carbonera D
    Biochim Biophys Acta; 2008 Feb; 1777(2):186-95. PubMed ID: 17991454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conservation of spin polarization during triplet-triplet energy transfer in reconstituted peridinin-chlorophyll-protein complexes.
    Di Valentin M; Tait C; Salvadori E; Ceola S; Scheer H; Hiller RG; Carbonera D
    J Phys Chem B; 2011 Nov; 115(45):13371-80. PubMed ID: 21942385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae.
    Kvíčalová Z; Alster J; Hofmann E; Khoroshyy P; Litvín R; Bína D; Polívka T; Pšenčík J
    Biochim Biophys Acta; 2016 Apr; 1857(4):341-9. PubMed ID: 26801214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for water-mediated triplet-triplet energy transfer in the photoprotective site of the peridinin-chlorophyll a-protein.
    Di Valentin M; Tait CE; Salvadori E; Orian L; Polimeno A; Carbonera D
    Biochim Biophys Acta; 2014 Jan; 1837(1):85-97. PubMed ID: 23871938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae.
    Damjanović A; Ritz T; Schulten K
    Biophys J; 2000 Oct; 79(4):1695-705. PubMed ID: 11023878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae.
    Hofmann E; Wrench PM; Sharples FP; Hiller RG; Welte W; Diederichs K
    Science; 1996 Jun; 272(5269):1788-91. PubMed ID: 8650577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring fluorescence of individual chromophores in peridinin-chlorophyll-protein complex using single molecule spectroscopy.
    Wörmke S; Mackowski S; Brotosudarmo TH; Jung C; Zumbusch A; Ehrl M; Scheer H; Hofmann E; Hiller RG; Bräuchle C
    Biochim Biophys Acta; 2007 Jul; 1767(7):956-64. PubMed ID: 17572378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature spectroscopic properties of the peridinin-chlorophyll a-protein (PCP) complex from the coral symbiotic dinoflagellate Symbiodinium.
    Niedzwiedzki DM; Jiang J; Lo CS; Blankenship RE
    J Phys Chem B; 2013 Sep; 117(38):11091-9. PubMed ID: 23557243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoprotective sites in the violaxanthin-chlorophyll a binding Protein (VCP) from Nannochloropsis gaditana.
    Carbonera D; Agostini A; Di Valentin M; Gerotto C; Basso S; Giacometti GM; Morosinotto T
    Biochim Biophys Acta; 2014 Aug; 1837(8):1235-46. PubMed ID: 24704151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altering the exciton landscape by removal of specific chlorophylls in monomeric LHCII provides information on the sites of triplet formation and quenching by means of ODMR and EPR spectroscopies.
    Agostini A; Nicol L; Da Roit N; Bortolus M; Croce R; Carbonera D
    Biochim Biophys Acta Bioenerg; 2021 Nov; 1862(11):148481. PubMed ID: 34363791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigment-pigment interactions in PCP of Amphidinium carterae investigated by nonlinear polarization spectroscopy in the frequency domain.
    Krikunova M; Lokstein H; Leupold D; Hiller RG; Voigt B
    Biophys J; 2006 Jan; 90(1):261-71. PubMed ID: 16214876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray structure of the high-salt form of the peridinin-chlorophyll a-protein from the dinoflagellate Amphidinium carterae: modulation of the spectral properties of pigments by the protein environment.
    Schulte T; Sharples FP; Hiller RG; Hofmann E
    Biochemistry; 2009 Jun; 48(21):4466-75. PubMed ID: 19371099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy.
    Schulte T; Niedzwiedzki DM; Birge RR; Hiller RG; Polívka T; Hofmann E; Frank HA
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20764-9. PubMed ID: 19934052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic properties of the main-form and high-salt peridinin-chlorophyll a proteins from Amphidinium carterae.
    Ilagan RP; Shima S; Melkozernov A; Lin S; Blankenship RE; Sharples FP; Hiller RG; Birge RR; Frank HA
    Biochemistry; 2004 Feb; 43(6):1478-87. PubMed ID: 14769024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.