These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29782947)

  • 1. Multifunctional degradable electronic scaffolds for cardiac tissue engineering.
    Feiner R; Fleischer S; Shapira A; Kalish O; Dvir T
    J Control Release; 2018 Jul; 281():189-195. PubMed ID: 29782947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues.
    Fleischer S; Shevach M; Feiner R; Dvir T
    Nanoscale; 2014 Aug; 6(16):9410-4. PubMed ID: 24744098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.
    Feiner R; Engel L; Fleischer S; Malki M; Gal I; Shapira A; Shacham-Diamand Y; Dvir T
    Nat Mater; 2016 Jun; 15(6):679-85. PubMed ID: 26974408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular assembly of thick multifunctional cardiac patches.
    Fleischer S; Shapira A; Feiner R; Dvir T
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1898-1903. PubMed ID: 28167795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun fine-textured scaffolds for heart tissue constructs.
    Zong X; Bien H; Chung CY; Yin L; Fang D; Hsiao BS; Chu B; Entcheva E
    Biomaterials; 2005 Sep; 26(26):5330-8. PubMed ID: 15814131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs.
    Kharaziha M; Shin SR; Nikkhah M; Topkaya SN; Masoumi N; Annabi N; Dokmeci MR; Khademhosseini A
    Biomaterials; 2014 Aug; 35(26):7346-54. PubMed ID: 24927679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering.
    Stoppel WL; Hu D; Domian IJ; Kaplan DL; Black LD
    Biomed Mater; 2015 Mar; 10(3):034105. PubMed ID: 25826196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering.
    Wen YT; Dai NT; Hsu SH
    Acta Biomater; 2019 Apr; 88():301-313. PubMed ID: 30825604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanowired three-dimensional cardiac patches.
    Dvir T; Timko BP; Brigham MD; Naik SR; Karajanagi SS; Levy O; Jin H; Parker KK; Langer R; Kohane DS
    Nat Nanotechnol; 2011 Sep; 6(11):720-5. PubMed ID: 21946708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing the biofabrication process of omentum-based scaffolds for engineering autologous tissues.
    Soffer-Tsur N; Shevach M; Shapira A; Peer D; Dvir T
    Biofabrication; 2014 Sep; 6(3):035023. PubMed ID: 25162210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac tissue engineering in magnetically actuated scaffolds.
    Sapir Y; Polyak B; Cohen S
    Nanotechnology; 2014 Jan; 25(1):014009. PubMed ID: 24334551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifying decellularized aortic valve scaffolds with stromal cell-derived factor-1α loaded proteolytically degradable hydrogel for recellularization and remodeling.
    Dai J; Qiao W; Shi J; Liu C; Hu X; Dong N
    Acta Biomater; 2019 Apr; 88():280-292. PubMed ID: 30721783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues.
    Kharaziha M; Nikkhah M; Shin SR; Annabi N; Masoumi N; Gaharwar AK; Camci-Unal G; Khademhosseini A
    Biomaterials; 2013 Sep; 34(27):6355-66. PubMed ID: 23747008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.
    Şenel Ayaz HG; Perets A; Ayaz H; Gilroy KD; Govindaraj M; Brookstein D; Lelkes PI
    Biomaterials; 2014 Oct; 35(30):8540-52. PubMed ID: 25017096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold Nanorod-Based Engineered Cardiac Patch for Suture-Free Engraftment by Near IR.
    Malki M; Fleischer S; Shapira A; Dvir T
    Nano Lett; 2018 Jul; 18(7):4069-4073. PubMed ID: 29406721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial tissue engineering using electrospun nanofiber composites.
    Kim PH; Cho JY
    BMB Rep; 2016 Jan; 49(1):26-36. PubMed ID: 26497579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.