BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 29782974)

  • 41. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy.
    Kim YD; Park TE; Singh B; Maharjan S; Choi YJ; Choung PH; Arote RB; Cho CS
    Nanomedicine (Lond); 2015; 10(7):1165-88. PubMed ID: 25929572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells.
    Park WS; Hayafune M; Miyano-Kurosaki N; Takaku H
    Gene Ther; 2003 Nov; 10(24):2046-50. PubMed ID: 14566364
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Is the Efficiency of RNA Silencing Evolutionarily Regulated?
    Ui-Tei K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. siRNA delivery systems for cancer treatment.
    Oh YK; Park TG
    Adv Drug Deliv Rev; 2009 Aug; 61(10):850-62. PubMed ID: 19422869
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models.
    Hatakeyama H; Wu SY; Mangala LS; Lopez-Berestein G; Sood AK
    Methods Mol Biol; 2016; 1402():189-197. PubMed ID: 26721492
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions.
    Schubert S; Grünweller A; Erdmann VA; Kurreck J
    J Mol Biol; 2005 May; 348(4):883-93. PubMed ID: 15843020
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.
    Wu H; Shi Y; Huang C; Zhang Y; Wu J; Shen H; Jia N
    J Biomater Appl; 2014 Apr; 28(8):1180-9. PubMed ID: 23985535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nonviral vector-mediated RNA interference: its gene silencing characteristics and important factors to achieve RNAi-based gene therapy.
    Takahashi Y; Nishikawa M; Takakura Y
    Adv Drug Deliv Rev; 2009 Jul; 61(9):760-6. PubMed ID: 19386274
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dual-target gene silencing by using long, synthetic siRNA duplexes without triggering antiviral responses.
    Chang CI; Kang HS; Ban C; Kim S; Lee DK
    Mol Cells; 2009 Jun; 27(6):689-95. PubMed ID: 19533030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook.
    Shukla S; Sumaria CS; Pradeepkumar PI
    ChemMedChem; 2010 Mar; 5(3):328-49. PubMed ID: 20043313
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.
    Nassanian H; Sanchez AM; Lo A; Bradley KA; Lee B
    PLoS One; 2007 Aug; 2(8):e767. PubMed ID: 17712415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.
    Grzelinski M; Urban-Klein B; Martens T; Lamszus K; Bakowsky U; Höbel S; Czubayko F; Aigner A
    Hum Gene Ther; 2006 Jul; 17(7):751-66. PubMed ID: 16839274
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene silencing in Echinococcus multilocularis protoscoleces using RNA interference.
    Mizukami C; Spiliotis M; Gottstein B; Yagi K; Katakura K; Oku Y
    Parasitol Int; 2010 Dec; 59(4):647-52. PubMed ID: 20817121
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RNA interference: new mechanisms for targeted treatment?
    Woessmann W; Damm-Welk C; Fuchs U; Borkhardt A
    Rev Clin Exp Hematol; 2003 Sep; 7(3):270-91. PubMed ID: 15024970
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tumor-targeting multifunctional nanoparticles for siRNA delivery: recent advances in cancer therapy.
    Ku SH; Kim K; Choi K; Kim SH; Kwon IC
    Adv Healthc Mater; 2014 Aug; 3(8):1182-93. PubMed ID: 24577795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genomewide view of gene silencing by small interfering RNAs.
    Chi JT; Chang HY; Wang NN; Chang DS; Dunphy N; Brown PO
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6343-6. PubMed ID: 12730368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbonate apatite-facilitated intracellularly delivered siRNA for efficient knockdown of functional genes.
    Hossain S; Stanislaus A; Chua MJ; Tada S; Tagawa Y; Chowdhury EH; Akaike T
    J Control Release; 2010 Oct; 147(1):101-8. PubMed ID: 20620182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of functional small interfering RNAs targeting amyotrophic lateral sclerosis-associated mutant alleles.
    Geng CM; Ding HL
    Chin Med J (Engl); 2011 Jan; 124(1):106-10. PubMed ID: 21362317
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoparticle-mediated delivery of small RNA molecules in tumor therapy.
    Aigner A; Fischer D
    Pharmazie; 2016 Jan; 71(1):27-34. PubMed ID: 26867350
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges.
    Gomes-da-Silva LC; Fonseca NA; Moura V; Pedroso de Lima MC; Simões S; Moreira JN
    Acc Chem Res; 2012 Jul; 45(7):1163-71. PubMed ID: 22568781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.