BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 29782983)

  • 1. An in vivo biocompatibility study of surgical meshes made from bacterial cellulose modified with chitosan.
    Piasecka-Zelga J; Zelga P; Szulc J; Wietecha J; Ciechańska D
    Int J Biol Macromol; 2018 Sep; 116():1119-1127. PubMed ID: 29782983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo biocompatibility of bacterial cellulose.
    Helenius G; Bäckdahl H; Bodin A; Nannmark U; Gatenholm P; Risberg B
    J Biomed Mater Res A; 2006 Feb; 76(2):431-8. PubMed ID: 16278860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: an experimental study in pigs.
    Scheidbach H; Tamme C; Tannapfel A; Lippert H; Köckerling F
    Surg Endosc; 2004 Feb; 18(2):211-20. PubMed ID: 14691711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer.
    Ul-Islam M; Subhan F; Islam SU; Khan S; Shah N; Manan S; Ullah MW; Yang G
    Int J Biol Macromol; 2019 Sep; 137():1050-1059. PubMed ID: 31295500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in pelvic organ prolapse mesh mechanical properties following implantation in rats.
    Ulrich D; Edwards SL; Alexander DLJ; Rosamilia A; Werkmeister JA; Gargett CE; Letouzey V
    Am J Obstet Gynecol; 2016 Feb; 214(2):260.e1-260.e8. PubMed ID: 26348376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial activity of triclosan chitosan coated graft on hernia graft infection model.
    Cakmak A; Cirpanli Y; Bilensoy E; Yorganci K; Caliş S; Saribaş Z; Kaynaroğlu V
    Int J Pharm; 2009 Nov; 381(2):214-9. PubMed ID: 19501640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility and growth of human keratinocytes and fibroblasts on biosynthesized cellulose-chitosan film.
    Kingkaew J; Jatupaiboon N; Sanchavanakit N; Pavasant P; Phisalaphong M
    J Biomater Sci Polym Ed; 2010; 21(8-9):1009-21. PubMed ID: 20507705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications.
    Ludwicka K; Kolodziejczyk M; Gendaszewska-Darmach E; Chrzanowski M; Jedrzejczak-Krzepkowska M; Rytczak P; Bielecki S
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):978-987. PubMed ID: 30261126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response.
    Weyhe D; Schmitz I; Belyaev O; Grabs R; Müller KM; Uhl W; Zumtobel V
    World J Surg; 2006 Aug; 30(8):1586-91. PubMed ID: 16855805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Cell Viability and Biocompatibility of Bacterial Cellulose through in Situ Carboxymethylation.
    Zhou D; Sun Y; Bao Z; Liu W; Xian M; Nian R; Xu F
    Macromol Biosci; 2019 May; 19(5):e1800395. PubMed ID: 30721574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-sized fibrils dispersed from bacterial cellulose grafted with chitosan.
    Liu X; Wang Y; Cheng Z; Sheng J; Yang R
    Carbohydr Polym; 2019 Jun; 214():311-316. PubMed ID: 30926002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue reactions of 5 sling materials and tissue material detachment strength of 4 synthetic mesh materials in a rabbit model.
    Yildirim A; Basok EK; Gulpinar T; Gurbuz C; Zemheri E; Tokuc R
    J Urol; 2005 Nov; 174(5):2037-40. PubMed ID: 16217389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preclinical Bioassay of a Polypropylene Mesh for Hernia Repair Pretreated with Antibacterial Solutions of Chlorhexidine and Allicin: An In Vivo Study.
    Pérez-Köhler B; García-Moreno F; Brune T; Pascual G; Bellón JM
    PLoS One; 2015; 10(11):e0142768. PubMed ID: 26556805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar.
    Du R; Zhao F; Peng Q; Zhou Z; Han Y
    Carbohydr Polym; 2018 Aug; 194():200-207. PubMed ID: 29801830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E
    Kołaczkowska M; Siondalski P; Kowalik MM; Pęksa R; Długa A; Zając W; Dederko P; Kołodziejska I; Malinowska-Pańczyk E; Sinkiewicz I; Staroszczyk H; Śliwińska A; Stanisławska A; Szkodo M; Pałczyńska P; Jabłoński G; Borman A; Wilczek P
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():302-312. PubMed ID: 30678915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation for and study on the property of medical bacterial cellulose].
    Li Z; Yan Z; Chen S; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):164-9. PubMed ID: 22404031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of adhesion formation, strength of ingrowth, and textile properties of prosthetic meshes after long-term intra-abdominal implantation in a rabbit.
    Novitsky YW; Harrell AG; Cristiano JA; Paton BL; Norton HJ; Peindl RD; Kercher KW; Heniford BT
    J Surg Res; 2007 Jun; 140(1):6-11. PubMed ID: 17481980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial cellulose: long-term biocompatibility studies.
    Pértile RA; Moreira S; Gil da Costa RM; Correia A; Guãrdao L; Gartner F; Vilanova M; Gama M
    J Biomater Sci Polym Ed; 2012; 23(10):1339-54. PubMed ID: 21722421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore size and pore shape--but not mesh density--alter the mechanical strength of tissue ingrowth and host tissue response to synthetic mesh materials in a porcine model of ventral hernia repair.
    Lake SP; Ray S; Zihni AM; Thompson DM; Gluckstein J; Deeken CR
    J Mech Behav Biomed Mater; 2015 Feb; 42():186-97. PubMed ID: 25486631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprosthetic mesh of bacterial cellulose for treatment of abdominal muscle aponeurotic defect in rat model.
    Silveira RK; Coelho AR; Pinto FC; de Albuquerque AV; de Melo Filho DA; de Andrade Aguiar JL
    J Mater Sci Mater Med; 2016 Aug; 27(8):129. PubMed ID: 27379627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.