BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29783083)

  • 1. Adsorption behaviors of supercritical Lennard-Jones fluid in slit-like pores.
    Li Y; Cui M; Peng B; Qin M
    J Mol Graph Model; 2018 Aug; 83():84-91. PubMed ID: 29783083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grand canonical Monte Carlo simulation for determination of optimum parameters for adsorption of supercritical methane in pillared layered pores.
    Cao D; Wang W; Duan X
    J Colloid Interface Sci; 2002 Oct; 254(1):1-7. PubMed ID: 12702418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of ethylene on graphitized thermal carbon black and in slit pores: a computer simulation study.
    Do DD; Do HD
    Langmuir; 2004 Aug; 20(17):7103-16. PubMed ID: 15301494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.
    Hlushak S
    Phys Chem Chem Phys; 2018 Jan; 20(2):872-888. PubMed ID: 29239426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A density functional theory with a mean-field weight function: applications to surface tension, adsorption, and phase transition of a Lennard-Jones fluid in a slit-like pore.
    Peng B; Yu YX
    J Phys Chem B; 2008 Dec; 112(48):15407-16. PubMed ID: 19006278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grand canonical monte carlo simulation study of methane adsorption at an open graphite surface and in slit-like carbon pores at 273 K.
    Kowalczyk P; Tanaka H; Kaneko K; Terzyk AP; Do DD
    Langmuir; 2005 Jun; 21(12):5639-46. PubMed ID: 15924500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weighted density functional theory for simple fluids: supercritical adsorption of a Lennard-Jones fluid in an ideal slit pore.
    Sweatman MB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031102. PubMed ID: 11308625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of inhomogeneous Lennard-Jones fluid near the critical region and close to the vapor-liquid coexistence curve: Monte Carlo and density-functional theory studies.
    Zhou S; Jamnik A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011202. PubMed ID: 16486128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of argon from sub- to supercritical conditions on graphitized thermal carbon black and in graphitic slit pores: a grand canonical Monte Carlo simulation study.
    Do DD; Do HD
    J Chem Phys; 2005 Aug; 123(8):084701. PubMed ID: 16164315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of Fluids in Pores Formed between Two Hard Cylinders.
    Bryk P; Lajtar L; Pizio O; Sokolowska Z; Sokolowski S
    J Colloid Interface Sci; 2000 Sep; 229(2):526-533. PubMed ID: 10985831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of confinement on critical adsorption: absence of critical depletion for fluids in slit pores.
    Maciołek A; Evans R; Wilding NB
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7105-19. PubMed ID: 11970650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lennard-Jones fluids confined in nanoscopic slits: evidence for reentrant filling transitions.
    Sałamacha L; Patrykiejew A; Sokołowski S; Binder K
    Eur Phys J E Soft Matter; 2004 Mar; 13(3):261-5. PubMed ID: 15103520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global and critical test of the perturbation density-functional theory based on extensive simulation of Lennard-Jones fluid near an interface and in confined systems.
    Zhou S; Jamnik A
    J Chem Phys; 2005 Sep; 123(12):124708. PubMed ID: 16392512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase equilibria and interfacial tension of fluids confined in narrow pores.
    Hamada Y; Koga K; Tanaka H
    J Chem Phys; 2007 Aug; 127(8):084908. PubMed ID: 17764295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of confinement on the solid-liquid coexistence of Lennard-Jones fluid.
    Das CK; Singh JK
    J Chem Phys; 2013 Nov; 139(17):174706. PubMed ID: 24206321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of energy sites on adsorption of Lennard-Jones fluids and phase transition in carbon slit pore of finite length a computer simulation study.
    Wongkoblap A; Do DD
    J Colloid Interface Sci; 2006 May; 297(1):1-9. PubMed ID: 16297400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting transition of Lennard-Jones fluid in cylindrical pores.
    Das CK; Singh JK
    J Chem Phys; 2014 May; 140(20):204703. PubMed ID: 24880307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reentrant filling transitions in Lennard-Jones fluids confined in nanoscopic slit-like pores.
    Sałamacha L; Patrykiejew A; Sokołowski S
    Eur Phys J E Soft Matter; 2005 Dec; 18(4):425-36. PubMed ID: 16362201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapor-liquid critical and interfacial properties of square-well fluids in slit pores.
    Jana S; Singh JK; Kwak SK
    J Chem Phys; 2009 Jun; 130(21):214707. PubMed ID: 19508087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.