BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 29783130)

  • 41. Effect of ammonia on methane production pathways and reaction rates in acetate-fed biogas processes.
    Hao LP; Mazéas L; Lü F; Grossin-Debattista J; He PJ; Bouchez T
    Water Sci Technol; 2017 Apr; 75(7-8):1839-1848. PubMed ID: 28452776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of different ammonia sources on aceticlastic and hydrogenotrophic methanogens.
    Tian H; Fotidis IA; Kissas K; Angelidaki I
    Bioresour Technol; 2018 Feb; 250():390-397. PubMed ID: 29195150
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature.
    Schnürer A; Nordberg A
    Water Sci Technol; 2008; 57(5):735-40. PubMed ID: 18401146
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings.
    Guo X; Wang C; Sun F; Zhu W; Wu W
    Bioresour Technol; 2014; 152():420-8. PubMed ID: 24316484
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of ammonium and acetate on methanogenic pathway and methanogenic community composition.
    Fotidis IA; Karakashev D; Kotsopoulos TA; Martzopoulos GG; Angelidaki I
    FEMS Microbiol Ecol; 2013 Jan; 83(1):38-48. PubMed ID: 22809020
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate.
    Yamada C; Kato S; Ueno Y; Ishii M; Igarashi Y
    J Biosci Bioeng; 2015 Jun; 119(6):678-82. PubMed ID: 25488041
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioaugmentation with a propionate-degrading methanogenic culture to improve methane production from chicken manure.
    Li Y; Wang C; Xu X; Sun Y; Xing T
    Bioresour Technol; 2022 Feb; 346():126607. PubMed ID: 34953985
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feasibility of dry anaerobic digestion of beer lees for methane production and biochar enhanced performance at mesophilic and thermophilic temperature.
    Sun C; Liu F; Song Z; Wang J; Li Y; Pan Y; Sheng T; Li L
    Bioresour Technol; 2019 Mar; 276():65-73. PubMed ID: 30611088
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure.
    Chen H; Huang R; Wu J; Zhang W; Han Y; Xiao B; Wang D; Zhou Y; Liu B; Yu G
    Bioresour Technol; 2021 Jan; 320(Pt A):124303. PubMed ID: 33126132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microbial community shifts in a farm-scale anaerobic digester treating swine waste: Correlations between bacteria communities associated with hydrogenotrophic methanogens and environmental conditions.
    Cho K; Shin SG; Kim W; Lee J; Lee C; Hwang S
    Sci Total Environ; 2017 Dec; 601-602():167-176. PubMed ID: 28551535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of limited air exposure and comparative performance between thermophilic and mesophilic solid-state anaerobic digestion of switchgrass.
    Sheets JP; Ge X; Li Y
    Bioresour Technol; 2015 Mar; 180():296-303. PubMed ID: 25618499
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester.
    Hori T; Haruta S; Ueno Y; Ishii M; Igarashi Y
    Appl Environ Microbiol; 2006 Feb; 72(2):1623-30. PubMed ID: 16461718
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Responses of mesophilic anaerobic sludge microbiota to thermophilic conditions: Implications for start-up and operation of thermophilic THP-AD systems.
    Zhang L; Gong X; Xu R; Guo K; Wang L; Zhou Y
    Water Res; 2022 Jun; 216():118332. PubMed ID: 35364350
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste.
    Sasaki D; Hori T; Haruta S; Ueno Y; Ishii M; Igarashi Y
    J Biosci Bioeng; 2011 Jan; 111(1):41-6. PubMed ID: 20851673
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Detection of novel syntrophic acetate-oxidizing bacteria from biogas processes by continuous acetate enrichment approaches.
    Westerholm M; Müller B; Singh A; Karlsson Lindsjö O; Schnürer A
    Microb Biotechnol; 2018 Jul; 11(4):680-693. PubMed ID: 29239113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monitoring of a microbial community during bioaugmentation with hydrogenotrophic methanogens to improve methane yield of an anaerobic digestion process.
    Gállego-Bravo AK; García-Mena J; Piña-Escobedo A; López-Jiménez G; Gutiérrez-Castillo ME; Tovar-Gálvez LR
    Biotechnol Lett; 2023 Oct; 45(10):1339-1353. PubMed ID: 37535136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolism of novel potential syntrophic acetate-oxidizing bacteria in thermophilic methanogenic chemostats.
    Zeng Y; Zheng D; Li L-P; Wang M; Gou M; Kamagata Y; Chen Y-T; Nobu MK; Tang Y-Q
    Appl Environ Microbiol; 2024 Feb; 90(2):e0109023. PubMed ID: 38259075
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Population dynamics during startup of thermophilic anaerobic digesters: the mixing factor.
    Ghanimeh SA; Saikaly PE; Li D; El-Fadel M
    Waste Manag; 2013 Nov; 33(11):2211-8. PubMed ID: 23830181
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enrichment of thermophilic methanogenic microflora from mesophilic waste activated sludge for anaerobic digestion of garbage slurry.
    Mellyanawaty M; Nakakoji S; Tatara M; Marbelia L; Sarto ; Prijambada ID; Budhijanto W; Ueno Y
    J Biosci Bioeng; 2021 Dec; 132(6):630-639. PubMed ID: 34642120
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation.
    Bocher BT; Agler MT; Garcia ML; Beers AR; Angenent LT
    J Ind Microbiol Biotechnol; 2008 May; 35(5):321-329. PubMed ID: 18188623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.