These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29783132)

  • 1. Characterization of biomass waste torrefaction under conventional and microwave heating.
    Ho SH; Zhang C; Chen WH; Shen Y; Chang JS
    Bioresour Technol; 2018 Sep; 264():7-16. PubMed ID: 29783132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic microwave torrefaction of microalga Chlorella vulgaris FSP-E with magnesium oxide optimized via taguchi approach: A thermo-energetic analysis.
    Chen WH; Arpia AA; Chang JS; Kwon EE; Park YK; Culaba AB
    Chemosphere; 2022 Mar; 290():133374. PubMed ID: 34952023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microwave torrefaction of rice straw and Pennisetum.
    Huang YF; Chen WR; Chiueh PT; Kuan WH; Lo SL
    Bioresour Technol; 2012 Nov; 123():1-7. PubMed ID: 22929739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel.
    Chen WH; Huang MY; Chang JS; Chen CY; Lee WJ
    Bioresour Technol; 2015 Jun; 185():285-93. PubMed ID: 25780904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating.
    Chen WH; Ye SC; Sheen HK
    Bioresour Technol; 2012 Aug; 118():195-203. PubMed ID: 22705524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy recovery from sewage sludge: Product characteristics, heating value prediction and reaction kinetics.
    Huang YF; Chiueh PT; Lo SL
    Chemosphere; 2021 Apr; 268():128783. PubMed ID: 33168284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of water washing and torrefaction pretreatments on rice husk pyrolysis by microwave heating.
    Zhang S; Dong Q; Zhang L; Xiong Y; Liu X; Zhu S
    Bioresour Technol; 2015 Oct; 193():442-8. PubMed ID: 26159301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.
    Ren S; Lei H; Wang L; Bu Q; Chen S; Wu J; Julson J; Ruan R
    Bioresour Technol; 2013 May; 135():659-64. PubMed ID: 22840200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous implementation of sludge dewatering and solid biofuel production by microwave torrefaction.
    Zhang C; Ho SH; Chen WH; Eng CF; Wang CT
    Environ Res; 2021 Apr; 195():110775. PubMed ID: 33497681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torrefaction, temperature, and heating rate dependencies of pyrolysis of coffee grounds: Its performances, bio-oils, and emissions.
    Fu J; Liu J; Xu W; Chen Z; Evrendilek F; Sun S
    Bioresour Technol; 2022 Feb; 345():126346. PubMed ID: 34856353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of microwave drying pretreatment on dry torrefaction of agricultural biomasses.
    Amer M; Nour M; Ahmed M; Ookawara S; Nada S; Elwardany A
    Bioresour Technol; 2019 Aug; 286():121400. PubMed ID: 31078983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The "COFFEE BIN" concept: centralized collection and torrefaction of spent coffee grounds.
    Vakalis S; Moustakas K; Benedetti V; Cordioli E; Patuzzi F; Loizidou M; Baratieri M
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35473-35481. PubMed ID: 31065982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the potential of biofuel (biochar) production from food wastes through thermal treatment.
    Rago YP; Surroop D; Mohee R
    Bioresour Technol; 2018 Jan; 248(Pt A):258-264. PubMed ID: 28684179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of torrefaction on yield and quality of pyrolytic products of arecanut husk: An agro-processing wastes.
    Gogoi D; Bordoloi N; Goswami R; Narzari R; Saikia R; Sut D; Gogoi L; Kataki R
    Bioresour Technol; 2017 Oct; 242():36-44. PubMed ID: 28427816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced fuel characteristics and physical chemistry of microwave hydrochar for sustainable fuel pellet production via co-densification.
    Kang K; Nanda S; Lam SS; Zhang T; Huo L; Zhao L
    Environ Res; 2020 Jul; 186():109480. PubMed ID: 32302869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual pretreatment of mixing H
    Chen WH; Ho KY; Lee KT; Ding L; Andrew Lin KY; Rajendran S; Singh Y; Chang JS
    Environ Res; 2022 Dec; 215(Pt 1):114016. PubMed ID: 35977586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted pyrolysis of biomass for liquid biofuels production.
    Yin C
    Bioresour Technol; 2012 Sep; 120():273-84. PubMed ID: 22771019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis.
    Correia R; Gonçalves M; Nobre C; Mendes B
    Bioresour Technol; 2017 Jan; 223():210-218. PubMed ID: 27792931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of biomass pyrolytic polygeneration by a moving bed: Characteristics of products and energy efficiency analysis.
    Zhang X; Che Q; Cui X; Wei Z; Zhang X; Chen Y; Wang X; Chen H
    Bioresour Technol; 2018 Apr; 254():130-138. PubMed ID: 29413913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave processing of oil palm wastes for bioenergy production and circular economy: Recent advancements, challenges, and future prospects.
    Foong SY; Chan YH; Lock SSM; Chin BLF; Yiin CL; Cheah KW; Loy ACM; Yek PNY; Chong WWF; Lam SS
    Bioresour Technol; 2023 Feb; 369():128478. PubMed ID: 36513306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.