These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
426 related articles for article (PubMed ID: 29783691)
21. Adipose, Bone, and Myeloma: Contributions from the Microenvironment. McDonald MM; Fairfield H; Falank C; Reagan MR Calcif Tissue Int; 2017 May; 100(5):433-448. PubMed ID: 27343063 [TBL] [Abstract][Full Text] [Related]
22. Drug resistance in multiple myeloma: latest findings and new concepts on molecular mechanisms. Abdi J; Chen G; Chang H Oncotarget; 2013 Dec; 4(12):2186-207. PubMed ID: 24327604 [TBL] [Abstract][Full Text] [Related]
23. Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Hideshima T; Mitsiades C; Tonon G; Richardson PG; Anderson KC Nat Rev Cancer; 2007 Aug; 7(8):585-98. PubMed ID: 17646864 [TBL] [Abstract][Full Text] [Related]
24. MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells. Soley L; Falank C; Reagan MR Curr Osteoporos Rep; 2017 Jun; 15(3):162-170. PubMed ID: 28432594 [TBL] [Abstract][Full Text] [Related]
25. Mechanisms of Drug Resistance in Relapse and Refractory Multiple Myeloma. Yang WC; Lin SF Biomed Res Int; 2015; 2015():341430. PubMed ID: 26649299 [TBL] [Abstract][Full Text] [Related]
26. Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma. Akhtar S; Ali TA; Faiyaz A; Khan OS; Raza SS; Kulinski M; Omri HE; Bhat AA; Uddin S Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32679860 [TBL] [Abstract][Full Text] [Related]
27. Targeting the Immune Niche within the Bone Marrow Microenvironment: The Rise of Immunotherapy in Multiple Myeloma. Podar K; Jager D Curr Cancer Drug Targets; 2017; 17(9):782-805. PubMed ID: 28201977 [TBL] [Abstract][Full Text] [Related]
28. Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing. Moschetta M; Kawano Y; Sacco A; Belotti A; Ribolla R; Chiarini M; Giustini V; Bertoli D; Sottini A; Valotti M; Ghidini C; Serana F; Malagola M; Imberti L; Russo D; Montanelli A; Rossi G; Reagan MR; Maiso P; Paiva B; Ghobrial IM; Roccaro AM Curr Osteoporos Rep; 2017 Oct; 15(5):499-506. PubMed ID: 28889371 [TBL] [Abstract][Full Text] [Related]
29. Mechanisms of Resistance in Multiple Myeloma. Papadas A; Asimakopoulos F Handb Exp Pharmacol; 2018; 249():251-288. PubMed ID: 28315070 [TBL] [Abstract][Full Text] [Related]
30. Bone marrow myeloid cells in regulation of multiple myeloma progression. Herlihy SE; Lin C; Nefedova Y Cancer Immunol Immunother; 2017 Aug; 66(8):1007-1014. PubMed ID: 28378067 [TBL] [Abstract][Full Text] [Related]
31. The WNT receptor ROR2 drives the interaction of multiple myeloma cells with the microenvironment through AKT activation. Frenquelli M; Caridi N; Antonini E; Storti F; ViganĂ² V; Gaviraghi M; Occhionorelli M; Bianchessi S; Bongiovanni L; Spinelli A; Marcatti M; Belloni D; Ferrero E; Karki S; Brambilla P; Martinelli-Boneschi F; Colla S; Ponzoni M; DePinho RA; Tonon G Leukemia; 2020 Jan; 34(1):257-270. PubMed ID: 31148590 [TBL] [Abstract][Full Text] [Related]
32. Predicting the impact of combined therapies on myeloma cell growth using a hybrid multi-scale agent-based model. Ji Z; Su J; Wu D; Peng H; Zhao W; Nlong Zhao B; Zhou X Oncotarget; 2017 Jan; 8(5):7647-7665. PubMed ID: 28032590 [TBL] [Abstract][Full Text] [Related]
33. Metabolic Features of Multiple Myeloma. El Arfani C; De Veirman K; Maes K; De Bruyne E; Menu E Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29662010 [TBL] [Abstract][Full Text] [Related]
34. Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment. Klein B; Seckinger A; Moehler T; Hose D Recent Results Cancer Res; 2011; 183():39-86. PubMed ID: 21509680 [TBL] [Abstract][Full Text] [Related]
35. Multiple myeloma as a model for the role of bone marrow niches in the control of angiogenesis. Ribatti D; Nico B; Vacca A Int Rev Cell Mol Biol; 2015; 314():259-82. PubMed ID: 25619720 [TBL] [Abstract][Full Text] [Related]
36. Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis. Andersen NF; Kristensen IB; Preiss BS; Christensen JH; Abildgaard N Eur J Haematol; 2015 Sep; 95(3):211-7. PubMed ID: 25353275 [TBL] [Abstract][Full Text] [Related]
37. Multiple myeloma: the bone marrow microenvironment and its relation to treatment. Andrews SW; Kabrah S; May JE; Donaldson C; Morse HR Br J Biomed Sci; 2013; 70(3):110-20. PubMed ID: 24273897 [TBL] [Abstract][Full Text] [Related]
38. Growth factors and antiapoptotic signaling pathways in multiple myeloma. van de Donk NW; Lokhorst HM; Bloem AC Leukemia; 2005 Dec; 19(12):2177-85. PubMed ID: 16239913 [TBL] [Abstract][Full Text] [Related]
39. Tipifarnib and bortezomib are synergistic and overcome cell adhesion-mediated drug resistance in multiple myeloma and acute myeloid leukemia. Yanamandra N; Colaco NM; Parquet NA; Buzzeo RW; Boulware D; Wright G; Perez LE; Dalton WS; Beaupre DM Clin Cancer Res; 2006 Jan; 12(2):591-9. PubMed ID: 16428505 [TBL] [Abstract][Full Text] [Related]
40. Extracellular matrix in bone marrow can mediate drug resistance in myeloma. Vincent T; Mechti N Leuk Lymphoma; 2005 Jun; 46(6):803-11. PubMed ID: 16019524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]