These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29783838)

  • 1. Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes.
    Senga R; Pichler T; Yomogida Y; Tanaka T; Kataura H; Suenaga K
    Nano Lett; 2018 Jun; 18(6):3920-3925. PubMed ID: 29783838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optical resonances in carbon nanotubes arise from excitons.
    Wang F; Dukovic G; Brus LE; Heinz TF
    Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron Spectroscopy of Single Quantum Objects To Directly Correlate the Local Structure to Their Electronic Transport and Optical Properties.
    Senga R; Pichler T; Suenaga K
    Nano Lett; 2016 Jun; 16(6):3661-7. PubMed ID: 27171894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.
    Liu K; Hong X; Choi S; Jin C; Capaz RB; Kim J; Wang W; Bai X; Louie SG; Wang E; Wang F
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7564-9. PubMed ID: 24821815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2004 Oct; 93(15):157402. PubMed ID: 15524940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes.
    Hartmann NF; Velizhanin KA; Haroz EH; Kim M; Ma X; Wang Y; Htoon H; Doorn SK
    ACS Nano; 2016 Sep; 10(9):8355-65. PubMed ID: 27529740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparison of Photocurrent Mechanisms in Quasi-Metallic and Semiconducting Carbon Nanotube pn-Junctions.
    Chang SW; Hazra J; Amer M; Kapadia R; Cronin SB
    ACS Nano; 2015 Dec; 9(12):11551-6. PubMed ID: 26498635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.
    Jiang T; Hong H; Liu C; Liu WT; Liu K; Wu S
    Nano Lett; 2018 Apr; 18(4):2590-2594. PubMed ID: 29543467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption spectroscopy of individual single-walled carbon nanotubes.
    Berciaud S; Cognet L; Poulin P; Weisman RB; Lounis B
    Nano Lett; 2007 May; 7(5):1203-7. PubMed ID: 17385932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-the-Fly Nonadiabatic Dynamics Simulations of Single-Walled Carbon Nanotubes with Covalent Defects.
    Weight BM; Sifain AE; Gifford BJ; Htoon H; Tretiak S
    ACS Nano; 2023 Apr; 17(7):6208-6219. PubMed ID: 36972076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes.
    Dukovic G; Wang F; Song D; Sfeir MY; Heinz TF; Brus LE
    Nano Lett; 2005 Nov; 5(11):2314-8. PubMed ID: 16277475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes.
    Graham MW; Calhoun TR; Green AA; Hersam MC; Fleming GR
    Nano Lett; 2012 Feb; 12(2):813-9. PubMed ID: 22214398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An explicit formula for optical oscillator strength of excitons in semiconducting single-walled carbon nanotubes: family behavior.
    Choi S; Deslippe J; Capaz RB; Louie SG
    Nano Lett; 2013 Jan; 13(1):54-8. PubMed ID: 23210547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Below-gap excitation of semiconducting single-wall carbon nanotubes.
    Soavi G; Grupp A; Budweg A; Scotognella F; Hefner T; Hertel T; Lanzani G; Leitenstorfer A; Cerullo G; Brida D
    Nanoscale; 2015 Nov; 7(43):18337-42. PubMed ID: 26488340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes.
    Perebeinos V; Avouris P
    Phys Rev Lett; 2008 Aug; 101(5):057401. PubMed ID: 18764429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.