These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 29784026)
1. Effects of ionizing radiation on the viability and proliferative behavior of the human glioblastoma T98G cell line. Murad H; Alghamian Y; Aljapawe A; Madania A BMC Res Notes; 2018 May; 11(1):330. PubMed ID: 29784026 [TBL] [Abstract][Full Text] [Related]
2. [Radioresistant subline of human glioma cell line MGR2R induced by repeated high dose X-ray irradiation]. Cheng JJ; Hu Z; Xia YF; Chen ZP Ai Zheng; 2006 Jan; 25(1):45-50. PubMed ID: 16405748 [TBL] [Abstract][Full Text] [Related]
3. Cell death in irradiated prostate epithelial cells: role of apoptotic and clonogenic cell kill. Bromfield GP; Meng A; Warde P; Bristow RG Prostate Cancer Prostatic Dis; 2003; 6(1):73-85. PubMed ID: 12664070 [TBL] [Abstract][Full Text] [Related]
4. Activation of the phosphorylation of ATM contributes to radioresistance of glioma stem cells. Zhou W; Sun M; Li GH; Wu YZ; Wang Y; Jin F; Zhang YY; Yang L; Wang DL Oncol Rep; 2013 Oct; 30(4):1793-801. PubMed ID: 23846672 [TBL] [Abstract][Full Text] [Related]
5. Modulation of ionizing radiation-induced apoptosis and cell cycle arrest by all-trans retinoic acid in promyelocytic leukemia cells (HL-60). Mareková M; Vávrová J; Vokurková D; Psutka J Physiol Res; 2003; 52(5):599-606. PubMed ID: 14535836 [TBL] [Abstract][Full Text] [Related]
6. Low dose hypersensitivity in the T98G human glioblastoma cell line. Short S; Mayes C; Woodcock M; Johns H; Joiner MC Int J Radiat Biol; 1999 Jul; 75(7):847-55. PubMed ID: 10489896 [TBL] [Abstract][Full Text] [Related]
7. P53-independent apoptosis: a mechanism of radiation-induced cell death of glioblastoma cells. Haas-Kogan DA; Dazin P; Hu L; Deen DF; Israel A Cancer J Sci Am; 1996; 2(2):114-21. PubMed ID: 9166509 [TBL] [Abstract][Full Text] [Related]
8. MicroRNA‑128a, BMI1 polycomb ring finger oncogene, and reactive oxygen species inhibit the growth of U‑87 MG glioblastoma cells following exposure to X‑ray radiation. Ye L; Yu G; Wang C; Du B; Sun D; Liu J; Qi T; Yu X; Wei W; Cheng J; Jiang Y Mol Med Rep; 2015 Oct; 12(4):6247-54. PubMed ID: 26238021 [TBL] [Abstract][Full Text] [Related]
9. Cell cycle checkpoint and apoptosis induction in glioblastoma cells and fibroblasts irradiated with carbon beam. Tsuboi K; Moritake T; Tsuchida Y; Tokuuye K; Matsumura A; Ando K J Radiat Res; 2007 Jul; 48(4):317-25. PubMed ID: 17548940 [TBL] [Abstract][Full Text] [Related]
10. Cytogenetic damage and the radiation-induced G1-phase checkpoint. Gupta N; Vij R; Haas-Kogan DA; Israel MA; Deen DF; Morgan WF Radiat Res; 1996 Mar; 145(3):289-98. PubMed ID: 8927696 [TBL] [Abstract][Full Text] [Related]
11. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer. De Bacco F; Luraghi P; Medico E; Reato G; Girolami F; Perera T; Gabriele P; Comoglio PM; Boccaccio C J Natl Cancer Inst; 2011 Apr; 103(8):645-61. PubMed ID: 21464397 [TBL] [Abstract][Full Text] [Related]
12. 50 Hz magnetic field influences caspase-3 activity and cell cycle distribution in ionizing radiation exposed SH-SY5Y neuroblastoma cells. Nieminen V; Martikainen MV; Kalliomäki S; Virén T; Seppälä J; Juutilainen J; Naarala J; Luukkonen J Int J Radiat Biol; 2024; 100(8):1183-1192. PubMed ID: 38924721 [TBL] [Abstract][Full Text] [Related]
13. Cytotoxicity, apoptosis, and viral replication in tumor cells treated with oncolytic ribonucleotide reductase-defective herpes simplex type 1 virus (hrR3) combined with ionizing radiation. Spear MA; Sun F; Eling DJ; Gilpin E; Kipps TJ; Chiocca EA; Bouvet M Cancer Gene Ther; 2000 Jul; 7(7):1051-9. PubMed ID: 10917208 [TBL] [Abstract][Full Text] [Related]
14. Dose-rate effect was observed in T98G glioma cells following BNCT. Kinashi Y; Okumura K; Kubota Y; Kitajima E; Okayasu R; Ono K; Takahashi S Appl Radiat Isot; 2014 Jun; 88():81-5. PubMed ID: 24360864 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene. Lang FF; Yung WK; Raju U; Libunao F; Terry NH; Tofilon PJ J Neurosurg; 1998 Jul; 89(1):125-32. PubMed ID: 9647183 [TBL] [Abstract][Full Text] [Related]
16. Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis. Enns L; Bogen KT; Wizniak J; Murtha AD; Weinfeld M Mol Cancer Res; 2004 Oct; 2(10):557-66. PubMed ID: 15498930 [TBL] [Abstract][Full Text] [Related]
17. Inter-Relationship between Low-Dose Hyper-Radiosensitivity and Radiation-Induced Bystander Effects in the Human T98G Glioma and the Epithelial HaCaT Cell Line. Fernandez-Palomo C; Seymour C; Mothersill C Radiat Res; 2016 Feb; 185(2):124-33. PubMed ID: 26849405 [TBL] [Abstract][Full Text] [Related]
18. Determining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: a cell line study in four glioblastoma multiforme (GBM) cell lines. Schoenherr D; Krueger SA; Martin L; Marignol L; Wilson GD; Marples B Int J Radiat Biol; 2013 Dec; 89(12):1009-16. PubMed ID: 23859266 [TBL] [Abstract][Full Text] [Related]
19. The effects of extra high dose rate irradiation on glioma stem-like cells. Hao J; Godley A; Shoemake JD; Han Z; Magnelli A; Yu JS PLoS One; 2018; 13(8):e0202533. PubMed ID: 30118510 [TBL] [Abstract][Full Text] [Related]
20. The response of malignant B lymphocytes to ionizing radiation: cell cycle arrest, apoptosis and protection against the cytotoxic effects of the mitotic inhibitor nocodazole. Landsverk KS; Lyng H; Stokke T Radiat Res; 2004 Oct; 162(4):405-15. PubMed ID: 15447042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]