BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 29784026)

  • 1. Effects of ionizing radiation on the viability and proliferative behavior of the human glioblastoma T98G cell line.
    Murad H; Alghamian Y; Aljapawe A; Madania A
    BMC Res Notes; 2018 May; 11(1):330. PubMed ID: 29784026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Radioresistant subline of human glioma cell line MGR2R induced by repeated high dose X-ray irradiation].
    Cheng JJ; Hu Z; Xia YF; Chen ZP
    Ai Zheng; 2006 Jan; 25(1):45-50. PubMed ID: 16405748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell death in irradiated prostate epithelial cells: role of apoptotic and clonogenic cell kill.
    Bromfield GP; Meng A; Warde P; Bristow RG
    Prostate Cancer Prostatic Dis; 2003; 6(1):73-85. PubMed ID: 12664070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of the phosphorylation of ATM contributes to radioresistance of glioma stem cells.
    Zhou W; Sun M; Li GH; Wu YZ; Wang Y; Jin F; Zhang YY; Yang L; Wang DL
    Oncol Rep; 2013 Oct; 30(4):1793-801. PubMed ID: 23846672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of ionizing radiation-induced apoptosis and cell cycle arrest by all-trans retinoic acid in promyelocytic leukemia cells (HL-60).
    Mareková M; Vávrová J; Vokurková D; Psutka J
    Physiol Res; 2003; 52(5):599-606. PubMed ID: 14535836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low dose hypersensitivity in the T98G human glioblastoma cell line.
    Short S; Mayes C; Woodcock M; Johns H; Joiner MC
    Int J Radiat Biol; 1999 Jul; 75(7):847-55. PubMed ID: 10489896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P53-independent apoptosis: a mechanism of radiation-induced cell death of glioblastoma cells.
    Haas-Kogan DA; Dazin P; Hu L; Deen DF; Israel A
    Cancer J Sci Am; 1996; 2(2):114-21. PubMed ID: 9166509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA‑128a, BMI1 polycomb ring finger oncogene, and reactive oxygen species inhibit the growth of U‑87 MG glioblastoma cells following exposure to X‑ray radiation.
    Ye L; Yu G; Wang C; Du B; Sun D; Liu J; Qi T; Yu X; Wei W; Cheng J; Jiang Y
    Mol Med Rep; 2015 Oct; 12(4):6247-54. PubMed ID: 26238021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell cycle checkpoint and apoptosis induction in glioblastoma cells and fibroblasts irradiated with carbon beam.
    Tsuboi K; Moritake T; Tsuchida Y; Tokuuye K; Matsumura A; Ando K
    J Radiat Res; 2007 Jul; 48(4):317-25. PubMed ID: 17548940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytogenetic damage and the radiation-induced G1-phase checkpoint.
    Gupta N; Vij R; Haas-Kogan DA; Israel MA; Deen DF; Morgan WF
    Radiat Res; 1996 Mar; 145(3):289-98. PubMed ID: 8927696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.
    De Bacco F; Luraghi P; Medico E; Reato G; Girolami F; Perera T; Gabriele P; Comoglio PM; Boccaccio C
    J Natl Cancer Inst; 2011 Apr; 103(8):645-61. PubMed ID: 21464397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxicity, apoptosis, and viral replication in tumor cells treated with oncolytic ribonucleotide reductase-defective herpes simplex type 1 virus (hrR3) combined with ionizing radiation.
    Spear MA; Sun F; Eling DJ; Gilpin E; Kipps TJ; Chiocca EA; Bouvet M
    Cancer Gene Ther; 2000 Jul; 7(7):1051-9. PubMed ID: 10917208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose-rate effect was observed in T98G glioma cells following BNCT.
    Kinashi Y; Okumura K; Kubota Y; Kitajima E; Okayasu R; Ono K; Takahashi S
    Appl Radiat Isot; 2014 Jun; 88():81-5. PubMed ID: 24360864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene.
    Lang FF; Yung WK; Raju U; Libunao F; Terry NH; Tofilon PJ
    J Neurosurg; 1998 Jul; 89(1):125-32. PubMed ID: 9647183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis.
    Enns L; Bogen KT; Wizniak J; Murtha AD; Weinfeld M
    Mol Cancer Res; 2004 Oct; 2(10):557-66. PubMed ID: 15498930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-Relationship between Low-Dose Hyper-Radiosensitivity and Radiation-Induced Bystander Effects in the Human T98G Glioma and the Epithelial HaCaT Cell Line.
    Fernandez-Palomo C; Seymour C; Mothersill C
    Radiat Res; 2016 Feb; 185(2):124-33. PubMed ID: 26849405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining if low dose hyper-radiosensitivity (HRS) can be exploited to provide a therapeutic advantage: a cell line study in four glioblastoma multiforme (GBM) cell lines.
    Schoenherr D; Krueger SA; Martin L; Marignol L; Wilson GD; Marples B
    Int J Radiat Biol; 2013 Dec; 89(12):1009-16. PubMed ID: 23859266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of extra high dose rate irradiation on glioma stem-like cells.
    Hao J; Godley A; Shoemake JD; Han Z; Magnelli A; Yu JS
    PLoS One; 2018; 13(8):e0202533. PubMed ID: 30118510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response of malignant B lymphocytes to ionizing radiation: cell cycle arrest, apoptosis and protection against the cytotoxic effects of the mitotic inhibitor nocodazole.
    Landsverk KS; Lyng H; Stokke T
    Radiat Res; 2004 Oct; 162(4):405-15. PubMed ID: 15447042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function.
    Bracey TS; Williams AC; Paraskeva C
    Clin Cancer Res; 1997 Aug; 3(8):1371-81. PubMed ID: 9815821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.