These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2978418)

  • 1. Graded spinal cord injuries produced in rabbits with non-invasive microwave hyperthermia.
    Sutton CH
    J Am Paraplegia Soc; 1988; 11(2):41-9. PubMed ID: 2978418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histopathological changes in the spinal cord after 434 MHz microwave hyperthermia in the cervical region of the rat.
    Sminia P; Troost D; Haveman J
    Int J Hyperthermia; 1989; 5(1):85-98. PubMed ID: 2921537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of 434 MHz microwave hyperthermia applied to the rat in the region of the cervical spinal cord.
    Sminia P; Haveman J; Wondergem J; van Dijk JD; Lebesque JV
    Int J Hyperthermia; 1987; 3(5):441-52. PubMed ID: 3681044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental study on spinal cord monitoring--changes in spinal cord evoked potentials during vertical direction distraction of the spinal cord].
    Harada Y
    Nihon Seikeigeka Gakkai Zasshi; 1983 Jul; 57(7):685-701. PubMed ID: 6655318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in sensitivity between magnetic motor-evoked potentials and somatosensory-evoked potentials in experimental spinal cord lesions.
    Hiraizumi Y; Transfeldt EE; Kawahara N; Yamada H
    Spine (Phila Pa 1976); 1996 Oct; 21(19):2190-6. PubMed ID: 8902962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Variations in spinal cord blood flow in stepwise spinal cord impaction injury].
    Nishijima Y; Sasaki M; Yamazaki Y; Toda N; Okada M; Tani K
    Nihon Seikeigeka Gakkai Zasshi; 1984 Aug; 58(8):803-12. PubMed ID: 6501987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory evoked potentials for selective monitoring of the rat spinal cord: a cerebellar evoked potential to assess ventral cord integrity.
    Hurlbert RJ; Koyanagi I; Tator CH
    J Neurotrauma; 1993; 10(2):181-200. PubMed ID: 8411219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evoked-potential monitoring during dorsal root entry zone surgery. An experimental animal model.
    Bennett MH; Lunsford LD; Akin O; Martinez AJ
    Stereotact Funct Neurosurg; 1989; 53(4):247-60. PubMed ID: 2486141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance imaging conditionally safe neurostimulation leads: investigation of the maximum safe lead tip temperature.
    Coffey RJ; Kalin R; Olsen JM
    Neurosurgery; 2014 Feb; 74(2):215-24; discussion 224-5. PubMed ID: 24176957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety versus efficacy of spinal cord stimulation for the generation of motor-evoked potentials in the rat.
    Sabato S; Agresta CA; Freeman GM; Salzman SK
    J Neurotrauma; 1991; 8(1):27-44. PubMed ID: 2072400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Clinical application of the evoked spinal cord potentials. Part 1. Neurophysiological assessment of the evoked spinal cord potentials in experimental cord trauma - with reference to cord compression and ischemia (author's transl)].
    Sudo N
    Nihon Seikeigeka Gakkai Zasshi; 1980 Dec; 54(12):1631-47. PubMed ID: 7288222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of lumbar spinal cord contusion injuries in the adult rat.
    Magnuson DS; Lovett R; Coffee C; Gray R; Han Y; Zhang YP; Burke DA
    J Neurotrauma; 2005 May; 22(5):529-43. PubMed ID: 15892599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental spinal cord injury produced by slow, graded compression. Alterations of cortical and spinal evoked potentials.
    Schramm J; Hashizume K; Fukushima T; Takahashi H
    J Neurosurg; 1979 Jan; 50(1):48-57. PubMed ID: 758379
    [No Abstract]   [Full Text] [Related]  

  • 14. Evoked potentials from direct cerebellar stimulation for monitoring of the rodent spinal cord.
    Hurlbert RJ; Tator CH; Fehlings MG; Niznik G; Linden RD
    J Neurosurg; 1992 Feb; 76(2):280-91. PubMed ID: 1730957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion tensor imaging predicts hyperacute spinal cord injury severity.
    Loy DN; Kim JH; Xie M; Schmidt RE; Trinkaus K; Song SK
    J Neurotrauma; 2007 Jun; 24(6):979-90. PubMed ID: 17600514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal dosimetry of spinal cord heating in the mouse.
    Froese G; Dunscombe PB; Das RM; McLellan J
    Int J Hyperthermia; 1990; 6(2):319-32. PubMed ID: 2324572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences.
    Zhang YP; Burke DA; Shields LB; Chekmenev SY; Dincman T; Zhang Y; Zheng Y; Smith RR; Benton RL; DeVries WH; Hu X; Magnuson DS; Whittemore SR; Shields CB
    J Neurotrauma; 2008 Oct; 25(10):1227-40. PubMed ID: 18986224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained spinal cord compression: part II: effect of methylprednisolone on regional blood flow and recovery of somatosensory evoked potentials.
    Carlson GD; Gorden CD; Nakazawa S; Wada E; Smith JS; LaManna JC
    J Bone Joint Surg Am; 2003 Jan; 85(1):95-101. PubMed ID: 12533578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental study of spinal cord evoked potentials and histologic changes following spinal cord heating.
    Uchiyama S; Yashiro K; Takahashi H; Homma T
    Spine (Phila Pa 1976); 1989 Nov; 14(11):1215-9. PubMed ID: 2603055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Somatosensory- and motor-evoked potentials in a rabbit model of spinal cord ischemia and reperfusion injury.
    Zhao M; Zhang Y; Liu L; Liu Y; Liao W
    Spine (Phila Pa 1976); 1997 May; 22(9):1013-7. PubMed ID: 9152452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.