BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 29784366)

  • 21. Classification of Sparkling Wine Style and Quality by MIR Spectroscopy.
    Culbert J; Cozzolino D; Ristic R; Wilkinson K
    Molecules; 2015 May; 20(5):8341-56. PubMed ID: 26007169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality.
    Barnaba FE; Bellincontro A; Mencarelli F
    J Sci Food Agric; 2014 Apr; 94(6):1071-7. PubMed ID: 24037743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data.
    Balabin RM; Smirnov SV
    Analyst; 2012 Apr; 137(7):1604-10. PubMed ID: 22337290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of ATR-NIR and ATR-MIR spectroscopy as an analytical tool for the quantification of the total polyphenols in Dendrobium huoshanense.
    Hao JW; Chen Y; Chen ND
    Phytochem Anal; 2020 May; 31(3):366-374. PubMed ID: 31943426
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy.
    Anjos O; Caldeira I; Fernandes TA; Pedro SI; Vitória C; Oliveira-Alves S; Catarino S; Canas S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time monitoring of process parameters in rice wine fermentation by a portable spectral analytical system combined with multivariate analysis.
    Ouyang Q; Zhao J; Pan W; Chen Q
    Food Chem; 2016 Jan; 190():135-141. PubMed ID: 26212952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of Attenuated Total Reflectance Mid-Infrared Spectroscopy for Rapid Prediction of Amino Acids in Chinese Rice Wine.
    Wu Z; Xu E; Long J; Wang F; Xu X; Jin Z; Jiao A
    J Food Sci; 2015 Aug; 80(8):C1670-9. PubMed ID: 26148137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of sugars in Chinese rice wine by Fourier transform near-infrared spectroscopy with partial least-squares regression.
    Niu X; Shen F; Yu Y; Yan Z; Xu K; Yu H; Ying Y
    J Agric Food Chem; 2008 Aug; 56(16):7271-8. PubMed ID: 18680372
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative analysis of sulfathiazole polymorphs in ternary mixtures by attenuated total reflectance infrared, near-infrared and Raman spectroscopy.
    Hu Y; Erxleben A; Ryder AG; McArdle P
    J Pharm Biomed Anal; 2010 Nov; 53(3):412-20. PubMed ID: 20605386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Depth-Specific Prediction of Soil Properties: MIR vs. Vis-NIR Spectroscopy.
    Shi Z; Yin J; Li B; Sun F; Miao T; Cao Y; Shi Z; Chen S; Hu B; Ji W
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of NIR chemical imaging with conventional NIR, Raman and ATR-IR spectroscopy for quantification of furosemide crystal polymorphs in ternary powder mixtures.
    Schönbichler SA; Bittner LK; Weiss AK; Griesser UJ; Pallua JD; Huck CW
    Eur J Pharm Biopharm; 2013 Aug; 84(3):616-25. PubMed ID: 23395969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of quality parameters in straw wine by means of FT-IR spectroscopy combined with multivariate data processing.
    Croce R; Malegori C; Oliveri P; Medici I; Cavaglioni A; Rossi C
    Food Chem; 2020 Feb; 305():125512. PubMed ID: 31610422
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine.
    Romera-Fernández M; Berrueta LA; Garmón-Lobato S; Gallo B; Vicente F; Moreda JM
    Talanta; 2012 Jan; 88():303-10. PubMed ID: 22265503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines.
    Sen I; Ozturk B; Tokatli F; Ozen B
    Talanta; 2016 Dec; 161():130-137. PubMed ID: 27769388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ near infrared spectroscopy monitoring of cyprosin production by recombinant Saccharomyces cerevisiae strains.
    Sampaio PN; Sales KC; Rosa FO; Lopes MB; Calado CR
    J Biotechnol; 2014 Oct; 188():148-57. PubMed ID: 25116361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Raman Spectroscopy as a Fast Tool to Classify and Analyze Bulgarian Wines-A Feasibility Study.
    Deneva V; Bakardzhiyski I; Bambalov K; Antonova D; Tsobanova D; Bambalov V; Cozzolino D; Antonov L
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31906182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.
    Cozzolino D
    J Sci Food Agric; 2015 Mar; 95(5):861-8. PubMed ID: 24816857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Feasibility Study on Monitoring Residual Sugar and Alcohol Strength in Kiwi Wine Fermentation Using a Fiber-Optic FT-NIR Spectrometry and PLS Regression.
    Wang B; Peng B
    J Food Sci; 2017 Feb; 82(2):358-363. PubMed ID: 28103396
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of oil and water content in olive pomace using near infrared and Raman spectrometry. A comparative study.
    Muik B; Lendl B; Molina-Díaz A; Pérez-Villarejo L; Ayora-Cañada MJ
    Anal Bioanal Chem; 2004 May; 379(1):35-41. PubMed ID: 14968284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of spectral regions for the quantification of red wine tannins with fourier transform mid-infrared spectroscopy.
    Jensen JS; Egebo M; Meyer AS
    J Agric Food Chem; 2008 May; 56(10):3493-9. PubMed ID: 18442247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.