These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 29784410)
1. Part 3: Solid phase extraction of Russian VX and its chemical attribution signatures in food matrices and their detection by GC-MS and LC-MS. Williams AM; Vu AK; Mayer BP; Hok S; Valdez CA; Alcaraz A Talanta; 2018 Aug; 186():607-614. PubMed ID: 29784410 [TBL] [Abstract][Full Text] [Related]
2. Part 2: Forensic attribution profiling of Russian VX in food using liquid chromatography-mass spectrometry. Jansson D; Lindström SW; Norlin R; Hok S; Valdez CA; Williams AM; Alcaraz A; Nilsson C; Åstot C Talanta; 2018 Aug; 186():597-606. PubMed ID: 29784408 [TBL] [Abstract][Full Text] [Related]
3. Trace Level Analysis of Sarin and VX in Food Using Normal Phase Silica Gel and Ultra-Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry (UPLC-TOF-MS). Bae SY; Winemiller MD J Agric Food Chem; 2018 Jul; 66(29):7846-7856. PubMed ID: 29920090 [TBL] [Abstract][Full Text] [Related]
4. Part 1: Tracing Russian VX to its synthetic routes by multivariate statistics of chemical attribution signatures. Holmgren KH; Valdez CA; Magnusson R; Vu AK; Lindberg S; Williams AM; Alcaraz A; Åstot C; Hok S; Norlin R Talanta; 2018 Aug; 186():586-596. PubMed ID: 29784407 [TBL] [Abstract][Full Text] [Related]
5. Determination of S-2-(N,N-diisopropylaminoethyl)- and S-2-(N,N-diethylaminoethyl) methylphosphonothiolate, nerve agent markers, in water samples using strong anion-exchange disk extraction, in vial trimethylsilylation, and gas chromatography-mass spectrometry analysis. Subramaniam R; Åstot C; Juhlin L; Nilsson C; Östin A J Chromatogr A; 2012 Mar; 1229():86-94. PubMed ID: 22326187 [TBL] [Abstract][Full Text] [Related]
6. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination. Gravett MR; Hopkins FB; Self AJ; Webb AJ; Timperley CM; Riches JR Anal Bioanal Chem; 2014 Aug; 406(21):5121-35. PubMed ID: 24972874 [TBL] [Abstract][Full Text] [Related]
7. Measurement of breakthrough volumes of volatile chemical warfare agents on a poly(2,6-diphenylphenylene oxide)-based adsorbent and application to thermal desorption-gas chromatography/mass spectrometric analysis. Kanamori-Kataoka M; Seto Y J Chromatogr A; 2015 Sep; 1410():19-27. PubMed ID: 26239699 [TBL] [Abstract][Full Text] [Related]
8. The identification of chemical attribution signatures of stored VX nerve agents using NMR, GC-MS, and LC-HRMS. Ovenden SPB; Webster RL; Micich E; McDowall LJ; McGill NW; Williams J; Zanatta SD Talanta; 2020 May; 211():120753. PubMed ID: 32070627 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous determination of acrylamide and 4-hydroxy-2,5-dimethyl-3(2H)-furanone in baby food by liquid chromatography-tandem mass spectrometry. Petrarca MH; Rosa MA; Queiroz SCN; Godoy HT J Chromatogr A; 2017 Nov; 1522():62-69. PubMed ID: 28985902 [TBL] [Abstract][Full Text] [Related]
10. Oxidative degradation of chemical warfare agents in water by bleaching powder. Qi L; Zuo G; Cheng Z; Zhu H; Li S Water Sci Technol; 2012; 66(7):1377-83. PubMed ID: 22864420 [TBL] [Abstract][Full Text] [Related]
11. Detection of VX contamination in soil through solid-phase microextraction sampling and gas chromatography/mass spectrometry of the VX degradation product bis(diisopropylaminoethyl)disulfide. Hook GL; Kimm G; Koch D; Savage PB; Ding B; Smith PA J Chromatogr A; 2003 Apr; 992(1-2):1-9. PubMed ID: 12735457 [TBL] [Abstract][Full Text] [Related]
12. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention. Singh V; Purohit AK; Chinthakindi S; Goud RD; Tak V; Pardasani D; Shrivastava AR; Dubey DK J Chromatogr A; 2016 May; 1448():32-41. PubMed ID: 27113675 [TBL] [Abstract][Full Text] [Related]
13. Methodological contributions towards LC-MS/MS quantification of free VX in plasma: An innovative approach. Debouit C; Bazire A; Lallement G; Daveloose D J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Nov; 878(30):3059-66. PubMed ID: 20947456 [TBL] [Abstract][Full Text] [Related]
14. Chemical analysis of bleach and hydroxide-based solutions after decontamination of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). Hopkins FB; Gravett MR; Self AJ; Wang M; Chua HC; Lee HS; Jones JT; Timperley CM; Riches JR Anal Bioanal Chem; 2014 Aug; 406(21):5111-9. PubMed ID: 24633585 [TBL] [Abstract][Full Text] [Related]
15. Extraction of nerve agent VX from soils. Montauban C; Bégos A; Bellier B Anal Chem; 2004 May; 76(10):2791-7. PubMed ID: 15144189 [TBL] [Abstract][Full Text] [Related]
16. Investigating the affinities and persistence of VX nerve agent in environmental matrices. Love AH; Vance AL; Reynolds JG; Davisson ML Chemosphere; 2004 Dec; 57(10):1257-64. PubMed ID: 15519370 [TBL] [Abstract][Full Text] [Related]
17. Analysis of O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its degradation products by packed capillary liquid chromatography-electrospray mass spectrometry. D'Agostino PA; Hancock JR; Provost LR J Chromatogr A; 1999 Apr; 837(1-2):93-105. PubMed ID: 10227178 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness and reaction networks of H2O2 vapor with NH3 gas for decontamination of the toxic warfare nerve agent, VX on a solid surface. Gon Ryu S; Wan Lee H J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(14):1417-27. PubMed ID: 26327407 [TBL] [Abstract][Full Text] [Related]
19. High-throughput immunomagnetic scavenging technique for quantitative analysis of live VX nerve agent in water, hamburger, and soil matrixes. Knaack JS; Zhou Y; Abney CW; Prezioso SM; Magnuson M; Evans R; Jakubowski EM; Hardy K; Johnson RC Anal Chem; 2012 Nov; 84(22):10052-7. PubMed ID: 23126363 [TBL] [Abstract][Full Text] [Related]
20. Analyses of macrolide antibiotic residues in eggs, raw milk, and honey using both ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry and high-performance liquid chromatography/tandem mass spectrometry. Wang J; Leung D Rapid Commun Mass Spectrom; 2007; 21(19):3213-22. PubMed ID: 17768705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]