BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29784647)

  • 1. Regulation of RabGAPs involved in insulin action.
    Mafakheri S; Chadt A; Al-Hasani H
    Biochem Soc Trans; 2018 Jun; 46(3):683-690. PubMed ID: 29784647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative actions of Tbc1d1 and AS160/Tbc1d4 in GLUT4-trafficking activities.
    Hatakeyama H; Morino T; Ishii T; Kanzaki M
    J Biol Chem; 2019 Jan; 294(4):1161-1172. PubMed ID: 30482843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1.
    Roach WG; Chavez JA; Mîinea CP; Lienhard GE
    Biochem J; 2007 Apr; 403(2):353-8. PubMed ID: 17274760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RabGAPs in skeletal muscle function and exercise.
    Espelage L; Al-Hasani H; Chadt A
    J Mol Endocrinol; 2020 Jan; 64(1):R1-R19. PubMed ID: 31627187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AKT and AMP-activated protein kinase regulate TBC1D1 through phosphorylation and its interaction with the cytosolic tail of insulin-regulated aminopeptidase IRAP.
    Mafakheri S; Flörke RR; Kanngießer S; Hartwig S; Espelage L; De Wendt C; Schönberger T; Hamker N; Lehr S; Chadt A; Al-Hasani H
    J Biol Chem; 2018 Nov; 293(46):17853-17862. PubMed ID: 30275018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glucose transporter 4 translocation by the Rab guanosine triphosphatase-activating protein AS160/TBC1D4: role of phosphorylation and membrane association.
    Stöckli J; Davey JR; Hohnen-Behrens C; Xu A; James DE; Ramm G
    Mol Endocrinol; 2008 Dec; 22(12):2703-15. PubMed ID: 18801932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice.
    Hargett SR; Walker NN; Keller SR
    Am J Physiol Endocrinol Metab; 2016 Feb; 310(4):E276-88. PubMed ID: 26625902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators.
    Chen S; Murphy J; Toth R; Campbell DG; Morrice NA; Mackintosh C
    Biochem J; 2008 Jan; 409(2):449-59. PubMed ID: 17995453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle.
    Cartee GD
    Diabetologia; 2015 Jan; 58(1):19-30. PubMed ID: 25280670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic.
    Sakamoto K; Holman GD
    Am J Physiol Endocrinol Metab; 2008 Jul; 295(1):E29-37. PubMed ID: 18477703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating protein (RabGAP) domains reveal critical elements for GLUT4 translocation.
    Park SY; Jin W; Woo JR; Shoelson SE
    J Biol Chem; 2011 May; 286(20):18130-8. PubMed ID: 21454505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction with insulin-regulated aminopeptidase.
    Eickelschulte S; Hartwig S; Leiser B; Lehr S; Joschko V; Chokkalingam M; Chadt A; Al-Hasani H
    J Biol Chem; 2021; 296():100637. PubMed ID: 33872597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPK and Beyond: The Signaling Network Controlling RabGAPs and Contraction-Mediated Glucose Uptake in Skeletal Muscle.
    Peifer-Weiß L; Al-Hasani H; Chadt A
    Int J Mol Sci; 2024 Feb; 25(3):. PubMed ID: 38339185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Affinity between TBC1D4 (AS160) phosphotyrosine-binding domain and insulin-regulated aminopeptidase cytoplasmic domain measured by isothermal titration calorimetry.
    Park S; Kim KY; Kim S; Yu YS
    BMB Rep; 2012 Jun; 45(6):360-4. PubMed ID: 22732222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle.
    Treebak JT; Pehmøller C; Kristensen JM; Kjøbsted R; Birk JB; Schjerling P; Richter EA; Goodyear LJ; Wojtaszewski JF
    J Physiol; 2014 Jan; 592(2):351-75. PubMed ID: 24247980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression, phosphorylation and function of the Rab-GTPase activating protein TBC1D1 in pancreatic beta-cells.
    Rütti S; Arous C; Nica AC; Kanzaki M; Halban PA; Bouzakri K
    FEBS Lett; 2014 Jan; 588(1):15-20. PubMed ID: 24239544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RabGAPs TBC1D1 and TBC1D4 Control Uptake of Long-Chain Fatty Acids Into Skeletal Muscle via Fatty Acid Transporter SLC27A4/FATP4.
    Benninghoff T; Espelage L; Eickelschulte S; Zeinert I; Sinowenka I; Müller F; Schöndeling C; Batchelor H; Cames S; Zhou Z; Kotzka J; Chadt A; Al-Hasani H
    Diabetes; 2020 Nov; 69(11):2281-2293. PubMed ID: 32868338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carboxy-terminal region of the TBC1D4 (AS160) RabGAP mediates protein homodimerization.
    Woo JR; Kim SJ; Kim KY; Jang H; Shoelson SE; Park S
    Int J Biol Macromol; 2017 Oct; 103():965-971. PubMed ID: 28545963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TBC1D1 interacting proteins, VPS13A and VPS13C, regulate GLUT4 homeostasis in C2C12 myotubes.
    Hook SC; Chadt A; Heesom KJ; Kishida S; Al-Hasani H; Tavaré JM; Thomas EC
    Sci Rep; 2020 Oct; 10(1):17953. PubMed ID: 33087848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism.
    Pan X; Eathiraj S; Munson M; Lambright DG
    Nature; 2006 Jul; 442(7100):303-6. PubMed ID: 16855591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.