BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29784782)

  • 41. Architectures and complex functions of tandem riboswitches.
    Sherlock ME; Higgs G; Yu D; Widner DL; White NA; Sudarsan N; Sadeeshkumar H; Perkins KR; Mirihana Arachchilage G; Malkowski SN; King CG; Harris KA; Gaffield G; Atilho RM; Breaker RR
    RNA Biol; 2022 Jan; 19(1):1059-1076. PubMed ID: 36093908
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Recent advances in RNA structurome.
    Xu B; Zhu Y; Cao C; Chen H; Jin Q; Li G; Ma J; Yang SL; Zhao J; Zhu J; Ding Y; Fang X; Jin Y; Kwok CK; Ren A; Wan Y; Wang Z; Xue Y; Zhang H; Zhang QC; Zhou Y
    Sci China Life Sci; 2022 Jul; 65(7):1285-1324. PubMed ID: 35717434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Affinity-Based Profiling of the Flavin Mononucleotide Riboswitch.
    Crielaard S; Maassen R; Vosman T; Rempkens I; Velema WA
    J Am Chem Soc; 2022 Jun; 144(23):10462-10470. PubMed ID: 35666649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2'-deoxyguanosine.
    Hamal Dhakal S; Panchapakesan SSS; Slattery P; Roth A; Breaker RR
    Proc Natl Acad Sci U S A; 2022 May; 119(22):e2120246119. PubMed ID: 35622895
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic Metabolic Response to (p)ppGpp Accumulation in
    Vogeleer P; Létisse F
    Front Microbiol; 2022; 13():872749. PubMed ID: 35495732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The bacterial yjdF riboswitch regulates translation through its tRNA-like fold.
    Trachman RJ; Passalacqua LFM; Ferré-D'Amaré AR
    J Biol Chem; 2022 Jun; 298(6):101934. PubMed ID: 35427649
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoaffinity Capture Compounds to Profile the Magic Spot Nucleotide Interactomes.
    Haas TM; Laventie BJ; Lagies S; Harter C; Prucker I; Ritz D; Saleem-Batcha R; Qiu D; Hüttel W; Andexer J; Kammerer B; Jenal U; Jessen HJ
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202201731. PubMed ID: 35294098
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Biochemical Landscape of Riboswitch Ligands.
    Breaker RR
    Biochemistry; 2022 Feb; 61(3):137-149. PubMed ID: 35068140
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus.
    Anderson BW; Schumacher MA; Yang J; Turdiev A; Turdiev H; Schroeder JW; He Q; Lee VT; Brennan RG; Wang JD
    Nucleic Acids Res; 2022 Jan; 50(2):847-866. PubMed ID: 34967415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diverse molecular mechanisms of transcription regulation by the bacterial alarmone ppGpp.
    Travis BA; Schumacher MA
    Mol Microbiol; 2022 Feb; 117(2):252-260. PubMed ID: 34894005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-Cell Technologies to Study Phenotypic Heterogeneity and Bacterial Persisters.
    Hare PJ; LaGree TJ; Byrd BA; DeMarco AM; Mok WWK
    Microorganisms; 2021 Nov; 9(11):. PubMed ID: 34835403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Live-Cell Imaging of Guanosine Tetra- and Pentaphosphate (p)ppGpp with RNA-based Fluorescent Sensors*.
    Sun Z; Wu R; Zhao B; Zeinert R; Chien P; You M
    Angew Chem Int Ed Engl; 2021 Nov; 60(45):24070-24074. PubMed ID: 34487413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An uncommon [K
    Trachman RJ; Ferré-D'Amaré AR
    RNA; 2021 Oct; 27(10):1257-1264. PubMed ID: 34257148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comprehensive discovery of novel structured noncoding RNAs in 26 bacterial genomes.
    Brewer KI; Greenlee EB; Higgs G; Yu D; Mirihana Arachchilage G; Chen X; King N; White N; Breaker RR
    RNA Biol; 2021 Dec; 18(12):2417-2432. PubMed ID: 33970790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of 11 candidate structured noncoding RNA motifs in humans by comparative genomics.
    Hou L; Xie J; Wu Y; Wang J; Duan A; Ao Y; Liu X; Yu X; Yan H; Perreault J; Li S
    BMC Genomics; 2021 Mar; 22(1):164. PubMed ID: 33750298
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The case of the missing allosteric ribozymes.
    Panchapakesan SSS; Breaker RR
    Nat Chem Biol; 2021 Apr; 17(4):375-382. PubMed ID: 33495645
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Survival of the Fittest: The Relationship of (p)ppGpp With Bacterial Virulence.
    Kundra S; Colomer-Winter C; Lemos JA
    Front Microbiol; 2020; 11():601417. PubMed ID: 33343543
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Kaldalu N; Hauryliuk V; Turnbull KJ; La Mensa A; Putrinš M; Tenson T
    Microbiol Mol Biol Rev; 2020 Nov; 84(4):. PubMed ID: 33177189
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The stringent response and physiological roles of (pp)pGpp in bacteria.
    Irving SE; Choudhury NR; Corrigan RM
    Nat Rev Microbiol; 2021 Apr; 19(4):256-271. PubMed ID: 33149273
    [TBL] [Abstract][Full Text] [Related]  

  • 60. (p)ppGpp: Magic Modulators of Bacterial Physiology and Metabolism.
    Steinchen W; Zegarra V; Bange G
    Front Microbiol; 2020; 11():2072. PubMed ID: 33013756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.