BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29784810)

  • 1. Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance.
    McHill AW; Hull JT; Wang W; Czeisler CA; Klerman EB
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6070-6075. PubMed ID: 29784810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian and wake-dependent influences on subjective sleepiness, cognitive throughput, and reaction time performance in older and young adults.
    Silva EJ; Wang W; Ronda JM; Wyatt JK; Duffy JF
    Sleep; 2010 Apr; 33(4):481-90. PubMed ID: 20394317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic sleep restriction greatly magnifies performance decrements immediately after awakening.
    McHill AW; Hull JT; Cohen DA; Wang W; Czeisler CA; Klerman EB
    Sleep; 2019 May; 42(5):. PubMed ID: 30722039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Vigilant Attention and Cognitive Performance Using Self-Reported Alertness, Circadian Phase, Hours since Awakening, and Accumulated Sleep Loss.
    Bermudez EB; Klerman EB; Czeisler CA; Cohen DA; Wyatt JK; Phillips AJ
    PLoS One; 2016; 11(3):e0151770. PubMed ID: 27019198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of modafinil on impairments in neurobehavioral performance and learning associated with extended wakefulness and circadian misalignment.
    Grady S; Aeschbach D; Wright KP; Czeisler CA
    Neuropsychopharmacology; 2010 Aug; 35(9):1910-20. PubMed ID: 20505660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of split sleep schedules (6h-on/6h-off) on neurobehavioural performance, sleep and sleepiness.
    Short MA; Centofanti S; Hilditch C; Banks S; Lushington K; Dorrian J
    Appl Ergon; 2016 May; 54():72-82. PubMed ID: 26851466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurobehavioral dynamics following chronic sleep restriction: dose-response effects of one night for recovery.
    Banks S; Van Dongen HP; Maislin G; Dinges DF
    Sleep; 2010 Aug; 33(8):1013-26. PubMed ID: 20815182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved neurobehavioral performance during the wake maintenance zone.
    Shekleton JA; Rajaratnam SM; Gooley JJ; Van Reen E; Czeisler CA; Lockley SW
    J Clin Sleep Med; 2013 Apr; 9(4):353-62. PubMed ID: 23585751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time of day effects on neurobehavioral performance during chronic sleep restriction.
    Mollicone DJ; Van Dongen HP; Rogers NL; Banks S; Dinges DF
    Aviat Space Environ Med; 2010 Aug; 81(8):735-44. PubMed ID: 20681233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Banking sleep: realization of benefits during subsequent sleep restriction and recovery.
    Rupp TL; Wesensten NJ; Bliese PD; Balkin TJ
    Sleep; 2009 Mar; 32(3):311-21. PubMed ID: 19294951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep, wake and phase dependent changes in neurobehavioral function under forced desynchrony.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    Sleep; 2011 Jul; 34(7):931-41. PubMed ID: 21731143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of neurobehavioral performance variability under forced desynchrony: evidence of state instability.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    Sleep; 2011 Jan; 34(1):57-63. PubMed ID: 21203373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian and wake-dependent modulation of fastest and slowest reaction times during the psychomotor vigilance task.
    Graw P; Kräuchi K; Knoblauch V; Wirz-Justice A; Cajochen C
    Physiol Behav; 2004 Feb; 80(5):695-701. PubMed ID: 14984804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salivary levels of alpha-amylase are associated with neurobehavioral alertness during extended wakefulness, but not simulated night-shift work.
    Pajcin M; Banks S; Dorrian J; Gupta CC; Coates AM; Grant CL; White JM; Della Vedova CB
    Physiol Behav; 2019 May; 204():1-9. PubMed ID: 30731103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cognitive workload and sleep restriction interact to influence sleep homeostatic responses.
    Goel N; Abe T; Braun ME; Dinges DF
    Sleep; 2014 Nov; 37(11):1745-56. PubMed ID: 25364070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-sleep inertia performance benefits of longer naps in simulated nightwork and extended operations.
    Mulrine HM; Signal TL; van den Berg MJ; Gander PH
    Chronobiol Int; 2012 Nov; 29(9):1249-57. PubMed ID: 23002951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.
    Van Dongen HP; Maislin G; Mullington JM; Dinges DF
    Sleep; 2003 Mar; 26(2):117-26. PubMed ID: 12683469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.