BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29784810)

  • 41. Influence of circadian phase and extended wakefulness on glucose levels during forced desynchrony.
    Broussard JL; Knud-Hansen BC; Grady S; Knauer OA; Ronda JM; Aeschbach D; Czeisler CA; Wright KP
    Sleep Health; 2024 Feb; 10(1S):S96-S102. PubMed ID: 37996284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Psychomotor vigilance task performance during and following chronic sleep restriction in rats.
    Deurveilher S; Bush JE; Rusak B; Eskes GA; Semba K
    Sleep; 2015 Apr; 38(4):515-28. PubMed ID: 25515100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sleep restriction masks the influence of the circadian process on sleep propensity.
    Sargent C; Darwent D; Ferguson SA; Kennaway DJ; Roach GD
    Chronobiol Int; 2012 Jun; 29(5):565-71. PubMed ID: 22621352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Can a simple balance task be used to assess fitness for duty?
    Sargent C; Darwent D; Ferguson SA; Roach GD
    Accid Anal Prev; 2012 Mar; 45 Suppl():74-9. PubMed ID: 22239936
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alertness, mood and performance rhythm disturbances associated with circadian sleep disorders in the blind.
    Lockley SW; Dijk DJ; Kosti O; Skene DJ; Arendt J
    J Sleep Res; 2008 Jun; 17(2):207-16. PubMed ID: 18482109
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alertness and psychomotor performance levels of marine pilots on an irregular work roster.
    Boudreau P; Lafrance S; Boivin DB
    Chronobiol Int; 2018 Jun; 35(6):773-784. PubMed ID: 29787295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Impact of Shift Work on Sleep, Alertness and Performance in Healthcare Workers.
    Ganesan S; Magee M; Stone JE; Mulhall MD; Collins A; Howard ME; Lockley SW; Rajaratnam SMW; Sletten TL
    Sci Rep; 2019 Mar; 9(1):4635. PubMed ID: 30874565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sleep and wakefulness out of phase with internal biological time impairs learning in humans.
    Wright KP; Hull JT; Hughes RJ; Ronda JM; Czeisler CA
    J Cogn Neurosci; 2006 Apr; 18(4):508-21. PubMed ID: 16768357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using a Single Daytime Performance Test to Identify Most Individuals at High-Risk for Performance Impairment during Extended Wake.
    St Hilaire MA; Kristal BS; Rahman SA; Sullivan JP; Quackenbush J; Duffy JF; Barger LK; Gooley JJ; Czeisler CA; Lockley SW
    Sci Rep; 2019 Nov; 9(1):16681. PubMed ID: 31723161
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decreased salivary alpha-amylase levels are associated with performance deficits during sleep loss.
    Pajcin M; Banks S; White JM; Dorrian J; Paech GM; Grant C; Johnson K; Tooley K; Fidock J; Kamimori GH; Della Vedova CB
    Psychoneuroendocrinology; 2017 Apr; 78():131-141. PubMed ID: 28196342
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Limited Efficacy of Caffeine and Recovery Costs During and Following 5 Days of Chronic Sleep Restriction.
    Doty TJ; So CJ; Bergman EM; Trach SK; Ratcliffe RH; Yarnell AM; Capaldi VF; Moon JE; Balkin TJ; Quartana PJ
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29029309
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The wake maintenance zone shows task dependent changes in cognitive function following one night without sleep.
    McMahon WR; Ftouni S; Drummond SPA; Maruff P; Lockley SW; Rajaratnam SMW; Anderson C
    Sleep; 2018 Oct; 41(10):. PubMed ID: 30169703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of sleep/wake history and circadian phase on proposed pilot fatigue safety performance indicators.
    Gander PH; Mulrine HM; van den Berg MJ; Smith AA; Signal TL; Wu LJ; Belenky G
    J Sleep Res; 2015 Feb; 24(1):110-9. PubMed ID: 25082509
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The alerting effect of the wake maintenance zone during 40 hours of sleep deprivation.
    Zeeuw J; Wisniewski S; Papakonstantinou A; Bes F; Wahnschaffe A; Zaleska M; Kunz D; Münch M
    Sci Rep; 2018 Jul; 8(1):11012. PubMed ID: 30030487
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modafinil improves alertness, vigilance, and executive function during simulated night shifts.
    Walsh JK; Randazzo AC; Stone KL; Schweitzer PK
    Sleep; 2004 May; 27(3):434-9. PubMed ID: 15164895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The impact of short night-time naps on performance, sleepiness and mood during a simulated night shift.
    Centofanti SA; Hilditch CJ; Dorrian J; Banks S
    Chronobiol Int; 2016; 33(6):706-15. PubMed ID: 27077524
    [TBL] [Abstract][Full Text] [Related]  

  • 57. No first night shift effect observed following a nocturnal main sleep and a prophylactic 1-h afternoon nap.
    Kosmadopoulos A; Zhou X; Roach GD; Darwent D; Sargent C
    Chronobiol Int; 2016; 33(6):716-20. PubMed ID: 27077691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of Cognitive Performance and Subjective Sleepiness Using a Model of Arousal Dynamics.
    Postnova S; Lockley SW; Robinson PA
    J Biol Rhythms; 2018 Apr; 33(2):203-218. PubMed ID: 29671707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
    Burke TM; Scheer FAJL; Ronda JM; Czeisler CA; Wright KP
    J Sleep Res; 2015 Aug; 24(4):364-371. PubMed ID: 25773686
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism.
    Reichert CF; Maire M; Gabel V; Viola AU; Kolodyazhniy V; Strobel W; Götz T; Bachmann V; Landolt HP; Cajochen C; Schmidt C
    J Biol Rhythms; 2014 Apr; 29(2):119-30. PubMed ID: 24682206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.