BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 29784810)

  • 61. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions.
    Burke TM; Scheer FAJL; Ronda JM; Czeisler CA; Wright KP
    J Sleep Res; 2015 Aug; 24(4):364-371. PubMed ID: 25773686
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism.
    Reichert CF; Maire M; Gabel V; Viola AU; Kolodyazhniy V; Strobel W; Götz T; Bachmann V; Landolt HP; Cajochen C; Schmidt C
    J Biol Rhythms; 2014 Apr; 29(2):119-30. PubMed ID: 24682206
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficient and regular patterns of nighttime sleep are related to increased vulnerability to microsleeps following a single night of sleep restriction.
    Innes CR; Poudel GR; Jones RD
    Chronobiol Int; 2013 Nov; 30(9):1187-96. PubMed ID: 23998288
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Duration of sleep inertia after napping during simulated night work and in extended operations.
    Signal TL; van den Berg MJ; Mulrine HM; Gander PH
    Chronobiol Int; 2012 Jul; 29(6):769-79. PubMed ID: 22734577
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sleep, circadian rhythms, and psychomotor vigilance.
    Van Dongen HP; Dinges DF
    Clin Sports Med; 2005 Apr; 24(2):237-49, vii-viii. PubMed ID: 15892921
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of dextroamphetamine, caffeine and modafinil on psychomotor vigilance test performance after 44 h of continuous wakefulness.
    Killgore WD; Rupp TL; Grugle NL; Reichardt RM; Lipizzi EL; Balkin TJ
    J Sleep Res; 2008 Sep; 17(3):309-21. PubMed ID: 18522689
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Acute sleep deprivation: the effects of the AMPAKINE compound CX717 on human cognitive performance, alertness and recovery sleep.
    Boyle J; Stanley N; James LM; Wright N; Johnsen S; Arbon EL; Dijk DJ
    J Psychopharmacol; 2012 Aug; 26(8):1047-57. PubMed ID: 21940760
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Sleep fragmentation as the cause of daytime sleepiness and reduced performance].
    Bonnet MH
    Wien Med Wochenschr; 1996; 146(13-14):332-4. PubMed ID: 9012173
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sleep deprivation enhances inter-stimulus interval effect on vigilant attention performance.
    Yang FN; Xu S; Chai Y; Basner M; Dinges DF; Rao H
    Sleep; 2018 Dec; 41(12):. PubMed ID: 30265364
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Temporal placement of a nap for alertness: contributions of circadian phase and prior wakefulness.
    Dinges DF; Orne MT; Whitehouse WG; Orne EC
    Sleep; 1987 Aug; 10(4):313-29. PubMed ID: 3659730
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sustained attention performance during sleep deprivation associates with instability in behavior and physiologic measures at baseline.
    Chua EC; Yeo SC; Lee IT; Tan LC; Lau P; Cai S; Zhang X; Puvanendran K; Gooley JJ
    Sleep; 2014 Jan; 37(1):27-39. PubMed ID: 24470693
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An adaptive-duration version of the PVT accurately tracks changes in psychomotor vigilance induced by sleep restriction.
    Basner M; Dinges DF
    Sleep; 2012 Feb; 35(2):193-202. PubMed ID: 22294809
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comparing the neurocognitive effects of 40 h sustained wakefulness in patients with untreated OSA and healthy controls.
    Wong KK; Marshall NS; Grunstein RR; Dodd MJ; Rogers NL
    J Sleep Res; 2008 Sep; 17(3):322-30. PubMed ID: 18522688
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Sleepiness, alertness and performance during a laboratory simulation of an acute shift of the wake-sleep cycle.
    Porcu S; Bellatreccia A; Ferrara M; Casagrande M
    Ergonomics; 1998 Aug; 41(8):1192-202. PubMed ID: 9715676
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation.
    Arnardottir ES; Nikonova EV; Shockley KR; Podtelezhnikov AA; Anafi RC; Tanis KQ; Maislin G; Stone DJ; Renger JJ; Winrow CJ; Pack AI
    Sleep; 2014 Oct; 37(10):1589-600. PubMed ID: 25197809
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.
    Darwent D; Ferguson SA; Sargent C; Paech GM; Williams L; Zhou X; Matthews RW; Dawson D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Operational assessment of the 5-h on/10-h off watchstanding schedule on a US Navy ship: sleep patterns, mood and psychomotor vigilance performance of crewmembers in the nuclear reactor department.
    Shattuck NL; Matsangas P
    Ergonomics; 2016 May; 59(5):657-64. PubMed ID: 26360772
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gender and age differences in psychomotor vigilance performance under differential sleep pressure conditions.
    Blatter K; Graw P; Münch M; Knoblauch V; Wirz-Justice A; Cajochen C
    Behav Brain Res; 2006 Apr; 168(2):312-7. PubMed ID: 16386807
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans.
    Dijk DJ; Czeisler CA
    Neurosci Lett; 1994 Jan; 166(1):63-8. PubMed ID: 8190360
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Uncovering residual effects of chronic sleep loss on human performance.
    Cohen DA; Wang W; Wyatt JK; Kronauer RE; Dijk DJ; Czeisler CA; Klerman EB
    Sci Transl Med; 2010 Jan; 2(14):14ra3. PubMed ID: 20371466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.