BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29784810)

  • 81. Time-of-day mediates the influences of extended wake and sleep restriction on simulated driving.
    Matthews RW; Ferguson SA; Zhou X; Sargent C; Darwent D; Kennaway DJ; Roach GD
    Chronobiol Int; 2012 Jun; 29(5):572-9. PubMed ID: 22621353
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Simulated driving under the influence of extended wake, time of day and sleep restriction.
    Matthews RW; Ferguson SA; Zhou X; Kosmadopoulos A; Kennaway DJ; Roach GD
    Accid Anal Prev; 2012 Mar; 45 Suppl():55-61. PubMed ID: 22239933
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Systematic individual differences in sleep homeostatic and circadian rhythm contributions to neurobehavioral impairment during sleep deprivation.
    Van Dongen HP; Bender AM; Dinges DF
    Accid Anal Prev; 2012 Mar; 45 Suppl(Suppl):11-6. PubMed ID: 22239924
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Interindividual variability in neurobehavioral response to sleep loss: A comprehensive review.
    Tkachenko O; Dinges DF
    Neurosci Biobehav Rev; 2018 Jun; 89():29-48. PubMed ID: 29563066
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Inter- and intra-individual variability in performance near the circadian nadir during sleep deprivation.
    Frey DJ; Badia P; Wright KP
    J Sleep Res; 2004 Dec; 13(4):305-15. PubMed ID: 15560765
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The efficacy of a restart break for recycling with optimal performance depends critically on circadian timing.
    Van Dongen HP; Belenky G; Vila BJ
    Sleep; 2011 Jul; 34(7):917-29. PubMed ID: 21731142
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Athletes underestimate sleep quantity during daytime nap opportunities.
    Lastella M; Roach GD; Miller DJ; Versey N; Romyn G; Sargent C
    Chronobiol Int; 2018 Jun; 35(6):869-871. PubMed ID: 29842816
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Socializing by Day May Affect Performance by Night: Vulnerability to Sleep Deprivation is Differentially Mediated by Social Exposure in Extraverts vs Introverts.
    Rupp TL; Killgore WD; Balkin TJ
    Sleep; 2010 Nov; 33(11):1475-85. PubMed ID: 21102989
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Age-related changes in the time course of vigilant attention during 40 hours without sleep in men.
    Adam M; Rétey JV; Khatami R; Landolt HP
    Sleep; 2006 Jan; 29(1):55-7. PubMed ID: 16453981
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Trait-like vulnerability to total and partial sleep loss.
    Rupp TL; Wesensten NJ; Balkin TJ
    Sleep; 2012 Aug; 35(8):1163-72. PubMed ID: 22851812
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night.
    Dinges DF; Pack F; Williams K; Gillen KA; Powell JW; Ott GE; Aptowicz C; Pack AI
    Sleep; 1997 Apr; 20(4):267-77. PubMed ID: 9231952
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Randomized, double-blind, placebo-controlled, crossover study of the effects of repeated-dose caffeine on neurobehavioral performance during 48 h of total sleep deprivation.
    Hansen DA; Ramakrishnan S; Satterfield BC; Wesensten NJ; Layton ME; Reifman J; Van Dongen HPA
    Psychopharmacology (Berl); 2019 Apr; 236(4):1313-1322. PubMed ID: 30539266
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The effect of one night's sleep deprivation on adolescent neurobehavioral performance.
    Louca M; Short MA
    Sleep; 2014 Nov; 37(11):1799-807. PubMed ID: 25364075
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Uncertain call likelihood negatively affects sleep and next-day cognitive performance while on-call in a laboratory environment.
    Sprajcer M; Jay SM; Vincent GE; Vakulin A; Lack L; Ferguson SA
    Chronobiol Int; 2018 Jun; 35(6):838-848. PubMed ID: 29750547
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Sleep inertia during a simulated 6-h on/6-h off fixed split duty schedule.
    Hilditch CJ; Short M; Van Dongen HP; Centofanti SA; Dorrian J; Kohler M; Banks S
    Chronobiol Int; 2016; 33(6):685-96. PubMed ID: 27078176
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Prediction of shiftworker alertness, sleep, and circadian phase using a model of arousal dynamics constrained by shift schedules and light exposure.
    Knock SA; Magee M; Stone JE; Ganesan S; Mulhall MD; Lockley SW; Howard ME; Rajaratnam SMW; Sletten TL; Postnova S
    Sleep; 2021 Nov; 44(11):. PubMed ID: 34111278
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The influence of time awake and circadian rhythm upon performance on a frontal lobe task.
    Harrison Y; Jones K; Waterhouse J
    Neuropsychologia; 2007 Apr; 45(8):1966-72. PubMed ID: 17275040
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Sleep inertia associated with a 10-min nap before the commute home following a night shift: A laboratory simulation study.
    Hilditch CJ; Dorrian J; Centofanti SA; Van Dongen HP; Banks S
    Accid Anal Prev; 2017 Feb; 99(Pt B):411-415. PubMed ID: 26589387
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Bright Light Increases Alertness and Not Cortisol in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (I).
    Lok R; Woelders T; van Koningsveld MJ; Oberman K; Fuhler SG; Beersma DGM; Hut RA
    J Biol Rhythms; 2022 Aug; 37(4):403-416. PubMed ID: 35686534
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Spontaneous attentional failures reflect multiplicative interactions of chronic sleep loss with acute sleep loss and circadian misalignment.
    Aeschbach D; Cohen DA; Lockyer BJ; Chellappa SL; Klerman EB
    Sleep Health; 2024 Feb; 10(1S):S89-S95. PubMed ID: 37689503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.