These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29784824)

  • 1. Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting.
    Hao R; Fan Y; Howard MD; Vaughan JC; Zhang B
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):5878-5883. PubMed ID: 29784824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging Single Nanobubbles of H
    Hao R; Fan Y; Anderson TJ; Zhang B
    Anal Chem; 2020 Mar; 92(5):3682-3688. PubMed ID: 32024359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring nanobubble nucleation at early-stage within a sub-9 nm solid-state nanopore.
    Li Q; Ying YL; Hu YX; Liu SC; Long YT
    Electrophoresis; 2020 Jun; 41(10-11):959-965. PubMed ID: 31652002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically reactive colloidal nanobubbles by water splitting.
    Yadav G; Nirmalkar N; Ohl CD
    J Colloid Interface Sci; 2024 Jun; 663():518-531. PubMed ID: 38422977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanobubble Labeling and Imaging with a Solvatochromic Fluorophore Nile Red.
    Peng Z; Zhang B
    Anal Chem; 2021 Nov; 93(46):15315-15322. PubMed ID: 34751561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bubble-STORM Approach for Super-Resolved Imaging of Nucleation Sites in Hydrogen Evolution Reactions.
    Wang Y; Yuan T; Su H; Zhou K; Yin L; Wang W
    ACS Sens; 2021 Feb; 6(2):380-386. PubMed ID: 32786392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Visualization of the Single-Nanoparticle Electrocatalytic Hydrogen Generation Process and Activity under Dark Field Microscopy.
    Xu S; Yu X; Chen Z; Zeng Y; Guo L; Li L; Luo F; Wang J; Qiu B; Lin Z
    Anal Chem; 2020 Jul; 92(13):9016-9023. PubMed ID: 32495618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics.
    Chan CU; Ohl CD
    Phys Rev Lett; 2012 Oct; 109(17):174501. PubMed ID: 23215193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic interplay between interfacial nanobubbles: oversaturation promotes anisotropic depinning and bubble coalescence.
    Nag S; Tomo Y; Teshima H; Takahashi K; Kohno M
    Phys Chem Chem Phys; 2021 Nov; 23(43):24652-24660. PubMed ID: 34704571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Spillover Phenomenon at the Interface of Metal-Supported Electrocatalysts for Hydrogen Evolution.
    Li J; Ma Y; Ho JC; Qu Y
    Acc Chem Res; 2024 Mar; 57(6):895-904. PubMed ID: 38427852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Nanobubbles Produced by Water Splitting.
    An H; Tan BH; Moo JGS; Liu S; Pumera M; Ohl CD
    Nano Lett; 2017 May; 17(5):2833-2838. PubMed ID: 28394607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
    Jing D; Li D; Pan Y; Bhushan B
    Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobubbles: An Effective Way to Study Gas-Generating Catalysis on a Single Nanoparticle.
    Li S; Du Y; He T; Shen Y; Bai C; Ning F; Hu X; Wang W; Xi S; Zhou X
    J Am Chem Soc; 2017 Oct; 139(40):14277-14284. PubMed ID: 28886624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of Nucleation and Stationary States of Electrochemically Generated Nanobubbles.
    Perez Sirkin YA; Gadea ED; Scherlis DA; Molinero V
    J Am Chem Soc; 2019 Jul; 141(27):10801-10811. PubMed ID: 31190533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Nanobubbles Studied by Time-Resolved Fluorescence Microscopy Methods Combined with AFM: The Impact of Surface Treatment on Nanobubble Nucleation.
    Hain N; Wesner D; Druzhinin SI; Schönherr H
    Langmuir; 2016 Nov; 32(43):11155-11163. PubMed ID: 27268423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Surfactant on Electrochemically Generated Surface Nanobubbles.
    Suvira M; Zhang B
    Anal Chem; 2021 Mar; 93(12):5170-5176. PubMed ID: 33733748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells.
    Shin D; Park JB; Kim YJ; Kim SJ; Kang JH; Lee B; Cho SP; Hong BH; Novoselov KS
    Nat Commun; 2015 Feb; 6():6068. PubMed ID: 25641584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction.
    Lemineur JF; Ciocci P; Noël JM; Ge H; Combellas C; Kanoufi F
    ACS Nano; 2021 Feb; 15(2):2643-2653. PubMed ID: 33523639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Equilibrium Model for Surface Nanobubbles in Electrochemistry.
    Ma Y; Guo Z; Chen Q; Zhang X
    Langmuir; 2021 Mar; 37(8):2771-2779. PubMed ID: 33576638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.