These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 29784920)

  • 1. Video-rate volumetric neuronal imaging using 3D targeted illumination.
    Xiao S; Tseng HA; Gritton H; Han X; Mertz J
    Sci Rep; 2018 May; 8(1):7921. PubMed ID: 29784920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device.
    Xu D; Jiang T; Li A; Hu B; Feng Z; Gong H; Zeng S; Luo Q
    J Biomed Opt; 2013 Jun; 18(6):060503. PubMed ID: 23757041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual fluorescence-absorption deconvolution applied to extended-depth-of-field microscopy.
    Shain WJ; Vickers NA; Negash A; Bifano T; Sentenac A; Mertz J
    Opt Lett; 2017 Oct; 42(20):4183-4186. PubMed ID: 29028043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-contrast, synchronous volumetric imaging with selective volume illumination microscopy.
    Truong TV; Holland DB; Madaan S; Andreev A; Keomanee-Dizon K; Troll JV; Koo DES; McFall-Ngai MJ; Fraser SE
    Commun Biol; 2020 Feb; 3(1):74. PubMed ID: 32060411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensorless adaptive optics implementation in widefield optical sectioning microscopy inside in vivo Drosophila brain.
    Pedrazzani M; Loriette V; Tchenio P; Benrezzak S; Nutarelli D; Fragola A
    J Biomed Opt; 2016 Mar; 21(3):36006. PubMed ID: 26968001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution.
    Yang B; Chen X; Wang Y; Feng S; Pessino V; Stuurman N; Cho NH; Cheng KW; Lord SJ; Xu L; Xie D; Mullins RD; Leonetti MD; Huang B
    Nat Methods; 2019 Jun; 16(6):501-504. PubMed ID: 31061492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy.
    Kim G; Nagarajan N; Pastuzyn E; Jenks K; Capecchi M; Shepherd J; Menon R
    Sci Rep; 2017 Mar; 7():44791. PubMed ID: 28317915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-definition mapping of neural activity using voltage-sensitive dyes.
    Cinelli AR
    Methods; 2000 Aug; 21(4):349-72. PubMed ID: 10964579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light sheet fluorescence microscopy for neuroscience.
    Corsetti S; Gunn-Moore F; Dholakia K
    J Neurosci Methods; 2019 May; 319():16-27. PubMed ID: 30048674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast processing of microscopic images using object-based extended depth of field.
    Intarapanich A; Kaewkamnerd S; Pannarut M; Shaw PJ; Tongsima S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):516. PubMed ID: 28155648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Faster, sharper, and deeper: structured illumination microscopy for biological imaging.
    Wu Y; Shroff H
    Nat Methods; 2018 Dec; 15(12):1011-1019. PubMed ID: 30478322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic speckle illumination microscopy with wavelet prefiltering.
    Ventalon C; Heintzmann R; Mertz J
    Opt Lett; 2007 Jun; 32(11):1417-9. PubMed ID: 17546140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-enabled efficient image restoration for 3D microscopy of turbid biological specimens.
    Xiao L; Fang C; Zhu L; Wang Y; Yu T; Zhao Y; Zhu D; Fei P
    Opt Express; 2020 Sep; 28(20):30234-30247. PubMed ID: 33114907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed volumetric imaging in vivo based on structured illumination microscopy with interleaved reconstruction.
    Shi R; Li Y; Kong L
    J Biophotonics; 2021 May; 14(5):e202000513. PubMed ID: 33502121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structured illumination microscopy with interleaved reconstruction (SIMILR).
    Ma Y; Li D; Smith ZJ; Li D; Chu K
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28703465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast confocal fluorescence imaging in freely behaving mice.
    Dussaux C; Szabo V; Chastagnier Y; Fodor J; Léger JF; Bourdieu L; Perroy J; Ventalon C
    Sci Rep; 2018 Nov; 8(1):16262. PubMed ID: 30389966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates.
    Seiriki K; Kasai A; Hashimoto T; Schulze W; Niu M; Yamaguchi S; Nakazawa T; Inoue KI; Uezono S; Takada M; Naka Y; Igarashi H; Tanuma M; Waschek JA; Ago Y; Tanaka KF; Hayata-Takano A; Nagayasu K; Shintani N; Hashimoto R; Kunii Y; Hino M; Matsumoto J; Yabe H; Nagai T; Fujita K; Matsuda T; Takuma K; Baba A; Hashimoto H
    Neuron; 2017 Jun; 94(6):1085-1100.e6. PubMed ID: 28641108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D deconvolution microscopy.
    Biggs DS
    Curr Protoc Cytom; 2010 Apr; Chapter 12():Unit 12.19.1-20. PubMed ID: 20373494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast volumetric phase-gradient imaging in thick samples.
    David Giese J; Ford TN; Mertz J
    Opt Express; 2014 Jan; 22(1):1152-62. PubMed ID: 24515075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative fluorescence microscopy and image deconvolution.
    Swedlow JR
    Methods Cell Biol; 2013; 114():407-26. PubMed ID: 23931516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.