These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 29785273)
21. Interrelationships of VEL1 and ENV1 in light response and development in Trichoderma reesei. Bazafkan H; Dattenböck C; Stappler E; Beier S; Schmoll M PLoS One; 2017; 12(4):e0175946. PubMed ID: 28423024 [TBL] [Abstract][Full Text] [Related]
22. Heterologous protein expression in Hypocrea jecorina: a historical perspective and new developments. Singh A; Taylor LE; Vander Wall TA; Linger J; Himmel ME; Podkaminer K; Adney WS; Decker SR Biotechnol Adv; 2015; 33(1):142-154. PubMed ID: 25479282 [TBL] [Abstract][Full Text] [Related]
23. The transcription factor ACE3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Zhang J; Chen Y; Wu C; Liu P; Wang W; Wei D J Biol Chem; 2019 Nov; 294(48):18435-18450. PubMed ID: 31501242 [TBL] [Abstract][Full Text] [Related]
24. Trichoderma reesei xylanase 5 is defective in the reference strain QM6a but functional alleles are present in other wild-type strains. Ramoni J; Marchetti-Deschmann M; Seidl-Seiboth V; Seiboth B Appl Microbiol Biotechnol; 2017 May; 101(10):4139-4149. PubMed ID: 28229208 [TBL] [Abstract][Full Text] [Related]
25. Proximity ligation scaffolding and comparison of two Jourdier E; Baudry L; Poggi-Parodi D; Vicq Y; Koszul R; Margeot A; Marbouty M; Bidard F Biotechnol Biofuels; 2017; 10():151. PubMed ID: 28616075 [TBL] [Abstract][Full Text] [Related]
27. CRZ1 regulator and calcium cooperatively modulate holocellulases gene expression in Trichoderma reesei QM6a. Martins-Santana L; Paula RG; Silva AG; Lopes DCB; Silva RDN; Silva-Rocha R Genet Mol Biol; 2020; 43(2):e20190244. PubMed ID: 32384133 [TBL] [Abstract][Full Text] [Related]
28. Kinetic transcriptome analysis reveals an essentially intact induction system in a cellulase hyper-producer Trichoderma reesei strain. Poggi-Parodi D; Bidard F; Pirayre A; Portnoy T; Blugeon C; Seiboth B; Kubicek CP; Le Crom S; Margeot A Biotechnol Biofuels; 2014; 7(1):173. PubMed ID: 25550711 [TBL] [Abstract][Full Text] [Related]
29. Self-fertility in Chromocrea spinulosa is a consequence of direct repeat-mediated loss of MAT1-2, subsequent imbalance of nuclei differing in mating type, and recognition between unlike nuclei in a common cytoplasm. Yun SH; Kim HK; Lee T; Turgeon BG PLoS Genet; 2017 Sep; 13(9):e1006981. PubMed ID: 28892488 [TBL] [Abstract][Full Text] [Related]
30. Schalamun M; Schmoll M Front Fungal Biol; 2022; 3():1002161. PubMed ID: 37746224 [TBL] [Abstract][Full Text] [Related]
31. The Kinase USK1 Regulates Cellulase Gene Expression and Secondary Metabolite Biosynthesis in Beier S; Hinterdobler W; Monroy AA; Bazafkan H; Schmoll M Front Microbiol; 2020; 11():974. PubMed ID: 32508786 [TBL] [Abstract][Full Text] [Related]
32. Cellulase formation by species of Trichoderma sect. Longibrachiatum and of Hypocrea spp. with anamorphs referable to Trichoderma sect. Longibrachiatum. Kubicek CP; Bölzlbauer UM; Kovacs W; Mach RL; Kuhls K; Lieckfeldt E; Börner T; Samuels GJ Fungal Genet Biol; 1996 Jun; 20(2):105-14. PubMed ID: 8810515 [TBL] [Abstract][Full Text] [Related]
33. The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Saloheimo M; Pakula TM Microbiology (Reading); 2012 Jan; 158(Pt 1):46-57. PubMed ID: 22053009 [TBL] [Abstract][Full Text] [Related]
34. Roles of PKAc1 and CRE1 in cellulose degradation, conidiation, and yellow pigment synthesis in Trichoderma reesei QM6a. Li N; Chen Y; Shen Y; Wang W Biotechnol Lett; 2022 Dec; 44(12):1465-1475. PubMed ID: 36269496 [TBL] [Abstract][Full Text] [Related]
35. Clonal species Trichoderma parareesei sp. nov. likely resembles the ancestor of the cellulase producer Hypocrea jecorina/T. reesei. Atanasova L; Jaklitsch WM; Komoń-Zelazowska M; Kubicek CP; Druzhinina IS Appl Environ Microbiol; 2010 Nov; 76(21):7259-67. PubMed ID: 20817800 [TBL] [Abstract][Full Text] [Related]
36. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Limón MC; Pakula T; Saloheimo M; Penttilä M Microb Cell Fact; 2011 May; 10():40. PubMed ID: 21609467 [TBL] [Abstract][Full Text] [Related]
37. Determining the environmental fate of a filamentous fungus, Trichoderma reesei, in laboratory-contained intact soil-core microcosms using competitive PCR and viability plating. Providenti MA; Mautner SI; Chaudhry O; Bombardier M; Scroggins R; Gregorich E; Smith ML Can J Microbiol; 2004 Aug; 50(8):623-31. PubMed ID: 15467788 [TBL] [Abstract][Full Text] [Related]
38. Trichoderma reesei RUT-C30--thirty years of strain improvement. Peterson R; Nevalainen H Microbiology (Reading); 2012 Jan; 158(Pt 1):58-68. PubMed ID: 21998163 [TBL] [Abstract][Full Text] [Related]
39. Targets of light signalling in Trichoderma reesei. Tisch D; Schmoll M BMC Genomics; 2013 Sep; 14():657. PubMed ID: 24070552 [TBL] [Abstract][Full Text] [Related]
40. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Le Crom S; Schackwitz W; Pennacchio L; Magnuson JK; Culley DE; Collett JR; Martin J; Druzhinina IS; Mathis H; Monot F; Seiboth B; Cherry B; Rey M; Berka R; Kubicek CP; Baker SE; Margeot A Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16151-6. PubMed ID: 19805272 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]