These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29785426)

  • 1. Theoretical insights into the reactivity of Fe-based catalysts for water oxidation: the role of electron-withdrawing groups.
    Xu P; Hu S; Zhang HD; Zheng X
    Phys Chem Chem Phys; 2018 May; 20(21):14919-14926. PubMed ID: 29785426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the mechanism of water oxidation catalyzed by nonheme iron complexes.
    Acuña-Parés F; Codolà Z; Costas M; Luis JM; Lloret-Fillol J
    Chemistry; 2014 May; 20(19):5696-707. PubMed ID: 24668499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the water oxidation mechanism with non-heme Fe(Pytacn) iron complexes. Evidence that the Fe(IV)(O)(Pytacn) species cannot react with the water molecule to form the O-O bond.
    Acuña-Parés F; Costas M; Luis JM; Lloret-Fillol J
    Inorg Chem; 2014 Jun; 53(11):5474-85. PubMed ID: 24816178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Fe
    Ezhov R; Ravari AK; Pushkar Y
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13502-13505. PubMed ID: 32369663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust iron coordination complexes with N-based neutral ligands as efficient Fenton-like catalysts at neutral pH.
    Canals M; Gonzalez-Olmos R; Costas M; Company A
    Environ Sci Technol; 2013 Sep; 47(17):9918-27. PubMed ID: 23895017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the impact of electronic and steric tuning of the ligand in the spin state and catalytic oxidation ability of the Fe(II)(Pytacn) family of complexes.
    Prat I; Company A; Corona T; Parella T; Ribas X; Costas M
    Inorg Chem; 2013 Aug; 52(16):9229-44. PubMed ID: 23901826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase.
    Sun S; Li ZS; Chen SL
    Dalton Trans; 2014 Jan; 43(3):973-81. PubMed ID: 24162174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the High Catalytic Activity of a Dinuclear Iron Complex for the Oxygen Evolution Reaction.
    Hu S; Xu P; Xu RX; Zheng X
    Inorg Chem; 2021 May; 60(10):7297-7305. PubMed ID: 33914515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent.
    Postils V; Company A; Solà M; Costas M; Luis JM
    Inorg Chem; 2015 Sep; 54(17):8223-36. PubMed ID: 26288338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene oligomerisation and polymerisation with nickel phosphanylenolates bearing electron-withdrawing substituents: Structure-reactivity relationships.
    Kuhn P; Sémeril D; Jeunesse C; Matt D; Neuburger M; Mota A
    Chemistry; 2006 Jul; 12(20):5210-9. PubMed ID: 16705619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design?
    Ansari A; Rajaraman G
    Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional investigation of the water oxidation by iron complexes based on tetradentate nitrogen ligands.
    Kasapbasi EE; Whangbo MH
    Inorg Chem; 2012 Oct; 51(20):10850-5. PubMed ID: 23025899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insight into water oxidation by mononuclear polypyridyl Ru catalysts.
    Wasylenko DJ; Ganesamoorthy C; Koivisto BD; Henderson MA; Berlinguette CP
    Inorg Chem; 2010 Mar; 49(5):2202-9. PubMed ID: 20131861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Water Oxidation Catalyzed by a Mononuclear Iron Complex with a Square Polypyridine Ligand: A DFT Study.
    Li YY; Tong LP; Liao RZ
    Inorg Chem; 2018 Apr; 57(8):4590-4601. PubMed ID: 29600856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic water oxidation: insights from manganese model chemistry.
    Young KJ; Brennan BJ; Tagore R; Brudvig GW
    Acc Chem Res; 2015 Mar; 48(3):567-74. PubMed ID: 25730258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms.
    Koepke SJ; Light KM; VanNatta PE; Wiley KM; Kieber-Emmons MT
    J Am Chem Soc; 2017 Jun; 139(25):8586-8600. PubMed ID: 28558469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical, spectroscopic and theoretical studies of a simple bifunctional cobalt corrole catalyst for oxygen evolution and hydrogen production.
    Lei H; Han A; Li F; Zhang M; Han Y; Du P; Lai W; Cao R
    Phys Chem Chem Phys; 2014 Feb; 16(5):1883-93. PubMed ID: 24327074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.