These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29785464)

  • 1. Contribution of Cochlear Compression to Discrimination of Rippled Spectra in On- and Low-frequency Noise.
    Milekhina ON; Nechaev DI; Supin AY
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):611-618. PubMed ID: 29785464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of rippled-spectrum patterns in noise: A manifestation of compressive nonlinearity.
    Milekhina ON; Nechaev DI; Klishin VO; Supin AY
    PLoS One; 2017; 12(3):e0174685. PubMed ID: 28346538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise.
    Nechaev DI; Milekhina ON; Supin AY
    PLoS One; 2015; 10(10):e0140313. PubMed ID: 26462066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive nonlinearity of human hearing in sound spectra discrimination.
    Milekhina ON; Nechaev DI; Supin AY
    Dokl Biol Sci; 2017 May; 474(1):89-92. PubMed ID: 28702730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Ripple-Density Resolution for Discriminating Between Rippled and Nonrippled Signals: Effect of Temporal Processing or Combination Products?
    Nechaev DI; Milekhina ON; Tomozova MS; Supin AY
    Trends Hear; 2021; 25():23312165211010163. PubMed ID: 33926309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimates of Ripple-Density Resolution Based on the Discrimination From Rippled and Nonrippled Reference Signals.
    Nechaev DI; Milekhina ON; Supin AY
    Trends Hear; 2019; 23():2331216518824435. PubMed ID: 30669951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rippled-spectrum resolution dependence on masker-to-probe ratio.
    Supin AY; Popov VV; Milekhina ON; Tarakanov MB
    Hear Res; 2005 Jun; 204(1-2):191-9. PubMed ID: 15925204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of auditory filter shapes derived with three different maskers.
    Glasberg BR; Moore BC; Nimmo-Smith I
    J Acoust Soc Am; 1984 Feb; 75(2):536-44. PubMed ID: 6699291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of masking noise on rippled-spectrum resolution.
    Supin AY; Popov VV; Milekhina ON; Tarakanov MB
    Hear Res; 2001 Jan; 151(1-2):157-166. PubMed ID: 11124463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimates of basilar-membrane nonlinearity effects on masking of tones and speech.
    Dubno JR; Horwitz AR; Ahlstrom JB
    Ear Hear; 2007 Feb; 28(1):2-17. PubMed ID: 17204895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of frequency selectivity on comodulation masking release in normal-hearing listeners.
    Hall JW; Grose JH; Moore BC
    J Speech Hear Res; 1993 Apr; 36(2):410-23. PubMed ID: 8487531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rippled-spectrum resolution dependence on level.
    Supin AY; Popov VV; Milekhina ON; Tarakanov MB
    Hear Res; 2003 Nov; 185(1-2):1-12. PubMed ID: 14599687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners.
    Nelson DA; Schroder AC; Wojtczak M
    J Acoust Soc Am; 2001 Oct; 110(4):2045-64. PubMed ID: 11681384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetry of masking between complex tones and noise: the role of temporal structure and peripheral compression.
    Gockel H; Moore BC; Patterson RD
    J Acoust Soc Am; 2002 Jun; 111(6):2759-70. PubMed ID: 12083211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rate of cochlear compression in a dolphin: a forward-masking evoked-potential study.
    Popov VV; Nechaev DI; Sysueva EV; Supin AY
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Sep; 206(5):757-766. PubMed ID: 32632514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rippled-spectrum resolution dependence on frequency: Estimates obtained by discrimination from rippled and nonrippled reference signals.
    Milekhina ON; Nechaev DI; Supin AY
    J Acoust Soc Am; 2019 Oct; 146(4):2231. PubMed ID: 31672006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative role of beats and combination tones in determining the shapes of masking patterns: II. Hearing-impaired listeners.
    Alcántara JI; Moore BC
    Hear Res; 2002 Mar; 165(1-2):103-16. PubMed ID: 12031520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetry of masking between noise and iterated rippled noise: evidence for time-interval processing in the auditory system.
    Krumbholz K; Patterson RD; Nobbe A
    J Acoust Soc Am; 2001 Oct; 110(4):2096-107. PubMed ID: 11681387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral and level effects in noise-on-tone suppression.
    Sidwell A
    J Acoust Soc Am; 1987 Apr; 81(4):1078-84. PubMed ID: 3571724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.