BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 29785464)

  • 1. Forward masking additivity and auditory compression at low and high frequencies.
    Plack CJ; O'Hanlon CG
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):405-15. PubMed ID: 14690058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pitfalls in behavioral estimates of basilar-membrane compression in humans.
    Wojtczak M; Oxenham AJ
    J Acoust Soc Am; 2009 Jan; 125(1):270-81. PubMed ID: 19173414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Re-examination of the Effect of Masker Phase Curvature on Non-simultaneous Masking.
    Carlyon RP; Flanagan S; Deeks JM
    J Assoc Res Otolaryngol; 2017 Dec; 18(6):815-825. PubMed ID: 28836061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of compression in the simultaneous masker phase effect.
    Tabuchi H; Laback B; Necciari T; Majdak P
    J Acoust Soc Am; 2016 Oct; 140(4):2680. PubMed ID: 27794305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Psychoacoustic measurements of ipsilateral cochlear gain reduction as a function of signal frequency.
    DeRoy Milvae K; Strickland EA
    J Acoust Soc Am; 2018 May; 143(5):3114. PubMed ID: 29857720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for Gain Reduction by a Precursor in an On-Frequency Forward Masking Paradigm.
    Strickland EA; Salloom WB; Hegland EL
    Acta Acust United Acust; 2018; 104(5):809-812. PubMed ID: 31736681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing data compression via noise detection.
    Hammerling DM; Baker AH
    Nat Comput Sci; 2021 Nov; 1(11):711-712. PubMed ID: 38217144
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of masker frequency and duration in forward masking: further evidence for the influence of peripheral nonlinearity.
    Oxenham AJ; Plack CJ
    Hear Res; 2000 Dec; 150(1-2):258-66. PubMed ID: 11077208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Cochlear Compression to Discrimination of Rippled Spectra in On- and Low-frequency Noise.
    Milekhina ON; Nechaev DI; Supin AY
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):611-618. PubMed ID: 29785464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of rippled-spectrum patterns in noise: A manifestation of compressive nonlinearity.
    Milekhina ON; Nechaev DI; Klishin VO; Supin AY
    PLoS One; 2017; 12(3):e0174685. PubMed ID: 28346538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise.
    Nechaev DI; Milekhina ON; Supin AY
    PLoS One; 2015; 10(10):e0140313. PubMed ID: 26462066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive nonlinearity of human hearing in sound spectra discrimination.
    Milekhina ON; Nechaev DI; Supin AY
    Dokl Biol Sci; 2017 May; 474(1):89-92. PubMed ID: 28702730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Ripple-Density Resolution for Discriminating Between Rippled and Nonrippled Signals: Effect of Temporal Processing or Combination Products?
    Nechaev DI; Milekhina ON; Tomozova MS; Supin AY
    Trends Hear; 2021; 25():23312165211010163. PubMed ID: 33926309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimates of Ripple-Density Resolution Based on the Discrimination From Rippled and Nonrippled Reference Signals.
    Nechaev DI; Milekhina ON; Supin AY
    Trends Hear; 2019; 23():2331216518824435. PubMed ID: 30669951
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.