BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 29785519)

  • 1. Threshold Dynamics of a Temperature-Dependent Stage-Structured Mosquito Population Model with Nested Delays.
    Wang X; Zou X
    Bull Math Biol; 2018 Jul; 80(7):1962-1987. PubMed ID: 29785519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population.
    Nipa KF; Jang SR; Allen LJS
    Math Biosci; 2021 Jan; 331():108516. PubMed ID: 33253746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia.
    Taghikhani R; Sharomi O; Gumel AB
    Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China.
    Zou L; Chen J; Feng X; Ruan S
    Bull Math Biol; 2018 Oct; 80(10):2633-2651. PubMed ID: 30083966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission dynamics of a reaction-advection-diffusion dengue fever model with seasonal developmental durations and intrinsic incubation periods.
    Zha Y; Jiang W
    J Math Biol; 2024 Apr; 88(6):74. PubMed ID: 38684552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range.
    Eisen L; Moore CG
    J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings.
    Yang HM; Macoris Mde L; Galvani KC; Andrighetti MT
    Biosystems; 2011 Mar; 103(3):360-71. PubMed ID: 21093536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dengue and yellow fever virus vectors: seasonal abundance, diversity and resting preferences in three Kenyan cities.
    Agha SB; Tchouassi DP; Bastos ADS; Sang R
    Parasit Vectors; 2017 Dec; 10(1):628. PubMed ID: 29284522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes.
    Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J
    Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data of an endemic municipality of Colombia.
    Lizarralde-Bejarano DP; Rojas-Díaz D; Arboleda-Sánchez S; Puerta-Yepes ME
    PLoS One; 2020; 15(3):e0229668. PubMed ID: 32160217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
    Phaijoo GR; Gurung DB
    Comput Math Methods Med; 2017; 2017():1747134. PubMed ID: 29312458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio.
    Huang MG; Tang MX; Yu JS; Zheng B
    Math Biosci Eng; 2019 May; 16(5):4741-4757. PubMed ID: 31499687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the Effect of a Novel Autodissemination Trap on the Spread of Dengue in Shah Alam and Malaysia.
    Liang Y; Ahmad Mohiddin MN; Bahauddin R; Hidayatul FO; Nazni WA; Lee HL; Greenhalgh D
    Comput Math Methods Med; 2019; 2019():1923479. PubMed ID: 31481976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation models of dengue transmission in Funchal, Madeira Island: Influence of seasonality.
    Salami D; Capinha C; Sousa CA; Martins MDRO; Lord C
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008679. PubMed ID: 33017443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Heterogeneity of Dengue Transmission in a City.
    Kong L; Wang J; Li Z; Lai S; Liu Q; Wu H; Yang W
    Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29857503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change, population immunity, and hyperendemicity in the transmission threshold of dengue.
    Oki M; Yamamoto T
    PLoS One; 2012; 7(10):e48258. PubMed ID: 23144746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing Effectiveness of Genetically Modifying Mosquito Populations: Risk Assessment of Releasing Blood-Fed Females.
    Xia S; Ury J; Powell JR
    Am J Trop Med Hyg; 2021 Mar; 104(5):1895-1906. PubMed ID: 33782213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics.
    Abdelrazec A; Gumel AB
    J Math Biol; 2017 May; 74(6):1351-1395. PubMed ID: 27647127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a dengue disease transmission model.
    Esteva L; Vargas C
    Math Biosci; 1998 Jun; 150(2):131-51. PubMed ID: 9656647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya.
    Nosrat C; Altamirano J; Anyamba A; Caldwell JM; Damoah R; Mutuku F; Ndenga B; LaBeaud AD
    PLoS Negl Trop Dis; 2021 Mar; 15(3):e0009182. PubMed ID: 33735293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.