These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29785780)

  • 41. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets.
    Yin G; Nishikawa M; Nosaka Y; Srinivasan N; Atarashi D; Sakai E; Miyauchi M
    ACS Nano; 2015 Feb; 9(2):2111-9. PubMed ID: 25629438
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Boosting CH
    Huang J; Guo X; Yue G; Hu Q; Wang L
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44403-44414. PubMed ID: 30507145
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of a Phage-Display Method to Identify Peptides that Bind to a Tin Oxide Nanosheets.
    Nakazawa H; Seta Y; Hirose T; Masuda Y; Umetsu M
    Protein Pept Lett; 2018; 25(1):68-75. PubMed ID: 29210630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.
    Kim J; Kim HE; Lee H
    ChemSusChem; 2018 Jan; 11(1):104-113. PubMed ID: 28895315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient electrochemical CO2 conversion powered by renewable energy.
    Kauffman DR; Thakkar J; Siva R; Matranga C; Ohodnicki PR; Zeng C; Jin R
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15626-32. PubMed ID: 26121278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultrathin, Cationic Covalent Organic Nanosheets for Enhanced CO
    Song Y; Guo P; Ma T; Su J; Huang L; Guo W; Liu Y; Li G; Xin Y; Zhang Q; Zhang S; Shen H; Feng X; Yang D; Tian J; Ravi SK; Tang BZ; Ye R
    Adv Mater; 2024 Apr; 36(17):e2310037. PubMed ID: 37931925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CO
    Zhao K; Liu Y; Quan X; Chen S; Yu H
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5302-5311. PubMed ID: 28103017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.
    Qiao J; Liu Y; Hong F; Zhang J
    Chem Soc Rev; 2014 Jan; 43(2):631-75. PubMed ID: 24186433
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol.
    Sun X; Zhu Q; Kang X; Liu H; Qian Q; Zhang Z; Han B
    Angew Chem Int Ed Engl; 2016 Jun; 55(23):6771-5. PubMed ID: 27098284
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation.
    Pang HL; Zhang XH; Zhong XX; Liu B; Wei XG; Kuang YF; Chen JH
    J Colloid Interface Sci; 2008 Mar; 319(1):193-8. PubMed ID: 18068181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing performances of a resistivity-type hydrogen sensor based on Pd/SnO
    Peng Y; Zheng L; Zou K; Li C
    Nanotechnology; 2017 May; 28(21):215501. PubMed ID: 28362639
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO
    Zhu M; Chen J; Huang L; Ye R; Xu J; Han YF
    Angew Chem Int Ed Engl; 2019 May; 58(20):6595-6599. PubMed ID: 30689279
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst.
    Won da H; Shin H; Koh J; Chung J; Lee HS; Kim H; Woo SI
    Angew Chem Int Ed Engl; 2016 Aug; 55(32):9297-300. PubMed ID: 27352078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface.
    Bernstein NJ; Akhade SA; Janik MJ
    Phys Chem Chem Phys; 2014 Jul; 16(27):13708-17. PubMed ID: 24722651
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO
    Wang X; Chen Z; Zhao X; Yao T; Chen W; You R; Zhao C; Wu G; Wang J; Huang W; Yang J; Hong X; Wei S; Wu Y; Li Y
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1944-1948. PubMed ID: 29266615
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO
    Cao Z; Derrick JS; Xu J; Gao R; Gong M; Nichols EM; Smith PT; Liu X; Wen X; Copéret C; Chang CJ
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):4981-4985. PubMed ID: 29498168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage.
    Huang Y; Wu D; Han S; Li S; Xiao L; Zhang F; Feng X
    ChemSusChem; 2013 Aug; 6(8):1510-5. PubMed ID: 23784753
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrocatalytic and Photocatalytic Reduction of CO
    Wang JW; Huang HH; Sun JK; Ouyang T; Zhong DC; Lu TB
    ChemSusChem; 2018 Mar; 11(6):1025-1031. PubMed ID: 29385321
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts.
    Francke R; Schille B; Roemelt M
    Chem Rev; 2018 May; 118(9):4631-4701. PubMed ID: 29319300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.