These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29785969)

  • 1. Pillared graphite anodes for reversible sodiation.
    Zhang H; Li Z; Xu W; Chen Y; Ji X; Lerner MM
    Nanotechnology; 2018 Aug; 29(32):325402. PubMed ID: 29785969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation.
    Maibach J; Jeschull F; Brandell D; Edström K; Valvo M
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12373-12381. PubMed ID: 28338314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for Alleviating Electrode Expansion of Graphite Electrodes in Sodium-Ion Batteries Followed by In Situ Electrochemical Dilatometry.
    Escher I; Kravets Y; Ferrero GA; Goktas M; Adelhelm P
    Energy Technol (Weinh); 2021 Mar; 9(3):2000880. PubMed ID: 33791188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries.
    Jache B; Binder JO; Abe T; Adelhelm P
    Phys Chem Chem Phys; 2016 Jun; 18(21):14299-316. PubMed ID: 27165175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent-Mediated, Reversible Ternary Graphite Intercalation Compounds for Extreme-Condition Li-Ion Batteries.
    Tao L; Xia D; Sittisomwong P; Zhang H; Lai J; Hwang S; Li T; Ma B; Hu A; Min J; Hou D; Shah SR; Zhao K; Yang G; Zhou H; Li L; Bai P; Shi F; Lin F
    J Am Chem Soc; 2024 Jun; 146(24):16764-74. PubMed ID: 38847794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries.
    Kim H; Yoon G; Lim K; Kang K
    Chem Commun (Camb); 2016 Oct; 52(85):12618-12621. PubMed ID: 27709171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlayer Design of Pillared Graphite by Na-Halide Cluster Intercalation for Anode Materials of Sodium-Ion Batteries.
    Hwang T; Cho M; Cho K
    ACS Omega; 2021 Apr; 6(14):9492-9499. PubMed ID: 33869929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvated Ion Intercalation in Graphite: Sodium and Beyond.
    Park J; Xu ZL; Kang K
    Front Chem; 2020; 8():432. PubMed ID: 32509735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.
    Xu J; Dou Y; Wei Z; Ma J; Deng Y; Li Y; Liu H; Dou S
    Adv Sci (Weinh); 2017 Oct; 4(10):1700146. PubMed ID: 29051856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of Full (Li-Ion)-O
    Hirshberg D; Sharon D; De La Llave E; Afri M; Frimer AA; Kwak WJ; Sun YK; Aurbach D
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4352-4361. PubMed ID: 27786463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the origin of unstable sodium graphite intercalation compounds.
    Lenchuk O; Adelhelm P; Mollenhauer D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19378-19390. PubMed ID: 31455956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
    Wang L; Zhu Y; Guo C; Zhu X; Liang J; Qian Y
    ChemSusChem; 2014 Jan; 7(1):87-91. PubMed ID: 24339264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-Ion Intercalation Mechanism in MXene Nanosheets.
    Kajiyama S; Szabova L; Sodeyama K; Iinuma H; Morita R; Gotoh K; Tateyama Y; Okubo M; Yamada A
    ACS Nano; 2016 Mar; 10(3):3334-41. PubMed ID: 26891421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of ternary and quaternary graphite intercalation compounds containing alkali metal cations and diamines.
    Maluangnont T; Lerner MM; Gotoh K
    Inorg Chem; 2011 Nov; 50(22):11676-82. PubMed ID: 22010603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a homologous series of tetraalkylammonium graphite intercalation compounds.
    Sirisaksoontorn W; Lerner MM
    Inorg Chem; 2013 Jun; 52(12):7139-44. PubMed ID: 23724803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles Understanding of the Staging Properties of the Graphite Intercalation Compounds towards Dual-Ion Battery Applications.
    Zhou W; Sit PH
    ACS Omega; 2020 Jul; 5(29):18289-18300. PubMed ID: 32743204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Reversible Na-Intercalation into Graphite Recovered from Spent Li-Ion Batteries for High-Energy Na-Ion Capacitor.
    Divya ML; Natarajan S; Lee YS; Aravindan V
    ChemSusChem; 2020 Nov; 13(21):5654-5663. PubMed ID: 32876399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena.
    Jache B; Adelhelm P
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10169-73. PubMed ID: 25056756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercalation chemistry of graphite: alkali metal ions and beyond.
    Li Y; Lu Y; Adelhelm P; Titirici MM; Hu YS
    Chem Soc Rev; 2019 Aug; 48(17):4655-4687. PubMed ID: 31294739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.