These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 29786064)
1. Fabrication of aluminum alloy functionally graded material using directional solidification under an axial static magnetic field. Hu S; Gagnoud A; Fautrelle Y; Moreau R; Li X Sci Rep; 2018 May; 8(1):7945. PubMed ID: 29786064 [TBL] [Abstract][Full Text] [Related]
2. Formation mechanism of axial macrosegregation of primary phases induced by a static magnetic field during directional solidification. Li X; Fautrelle Y; Ren Z; Moreau R Sci Rep; 2017 Apr; 7():45834. PubMed ID: 28367991 [TBL] [Abstract][Full Text] [Related]
3. Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy. Wang J; Yue S; Fautrelle Y; Lee PD; Li X; Zhong Y; Ren Z Sci Rep; 2016 Apr; 6():24585. PubMed ID: 27091383 [TBL] [Abstract][Full Text] [Related]
4. Effect of a weak transverse magnetic field on the microstructure in directionally solidified peritectic alloys. Li X; Lu Z; Fautrelle Y; Gagnoud A; Moreau R; Ren Z Sci Rep; 2016 Nov; 6():37872. PubMed ID: 27886265 [TBL] [Abstract][Full Text] [Related]
5. Segregation and Morphological Evolution of Si Phase during Electromagnetic Directional Solidification of Hypereutectic Al-Si Alloys. Jiang W; Yu W; Li J; You Z; Li C; Lv X Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30577512 [TBL] [Abstract][Full Text] [Related]
6. Influence of a transverse static magnetic field on the orientation and peritectic reaction of Cu-10.5 at.% Sn peritectic alloy. Lu Z; Fautrelle Y; Ren Z; Li X Sci Rep; 2018 Jul; 8(1):10641. PubMed ID: 30006519 [TBL] [Abstract][Full Text] [Related]
7. Phase-field simulation of peritectic solidification closely coupled with directional solidification experiments in an Al-36 wt% Ni alloy. Siquieri R; Doernberg E; Emmerich H; Schmid-Fetzer R J Phys Condens Matter; 2009 Nov; 21(46):464112. PubMed ID: 21715876 [TBL] [Abstract][Full Text] [Related]
8. Distribution and Morphology of α-Al, Si and Fe-Rich Phases in Al-Si-Fe Alloys under an Electromagnetic Field. Mikolajczak P Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176186 [TBL] [Abstract][Full Text] [Related]
9. Effects of a high-gradient magnetic field on the migratory behavior of primary crystal silicon in hypereutectic Al-Si alloy. Jin F; Ren Z; Ren W; Deng K; Zhong Y; Yu J Sci Technol Adv Mater; 2008 Apr; 9(2):024202. PubMed ID: 27877953 [TBL] [Abstract][Full Text] [Related]
10. The Refining Mechanism of Super Gravity on the Solidification Structure of Al-Cu Alloys. Yang Y; Song B; Yang Z; Song G; Cai Z; Guo Z Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774120 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Al-Al₃Ti/Ti₃Al Functionally Graded Materials under a Centrifugal Force. El-Hadad S; Sato H; Miura-Fujiwara E; Watanabe Y Materials (Basel); 2010 Sep; 3(9):4639-4656. PubMed ID: 28883345 [TBL] [Abstract][Full Text] [Related]
12. Effect of microgravity on the solidification of aluminum-bismuth-tin immiscible alloys. Jiang H; Li S; Zhang L; He J; Zhao J NPJ Microgravity; 2019; 5():26. PubMed ID: 31754626 [TBL] [Abstract][Full Text] [Related]
13. Solute trapping in Al-Cu alloys caused by a 29 Tesla super high static magnetic field. Zheng T; Zhou B; Zhong Y; Wang J; Shuai S; Ren Z; Debray F; Beaugnon E Sci Rep; 2019 Jan; 9(1):266. PubMed ID: 30670718 [TBL] [Abstract][Full Text] [Related]
14. ARTEC-A furnace module for directional solidification and quenching experiments in microgravity. Balter M; Neumann C; Bräuer D; Dreißigacker C; Steinbach S Rev Sci Instrum; 2019 Dec; 90(12):125117. PubMed ID: 31893778 [TBL] [Abstract][Full Text] [Related]
15. Bending strength of zirconia/porcelain functionally graded materials prepared using spark plasma sintering. Tsukada G; Sueyoshi H; Kamibayashi H; Tokuda M; Torii M J Dent; 2014 Dec; 42(12):1569-76. PubMed ID: 25280989 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Ni-Cu Interaction in Aluminum-Based Alloys: Hardness, Tensile and Precipitation Behavior. Samuel E; Samuel AM; Songmene V; Doty HW; Samuel FH Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336417 [TBL] [Abstract][Full Text] [Related]
17. X-radiography front tracking gradient furnace for directional solidification of bulk Al-alloys. Jafarizadeh-Koohbanani A; Steinbach S; Drescher J; Frenzel J; Kargl F Rev Sci Instrum; 2023 Aug; 94(8):. PubMed ID: 38065170 [TBL] [Abstract][Full Text] [Related]
18. The influence of gravity on composition uniformity and microstructure in immiscible Al-In alloys. Andrews JB; Hayes LJ Ann N Y Acad Sci; 2002 Oct; 974():102-9. PubMed ID: 12446317 [TBL] [Abstract][Full Text] [Related]
19. Competitive dendrite growth during directional solidification of a transparent alloy: Modeling and experiment. Hu M; Sun C; Fang H; Zhu M Eur Phys J E Soft Matter; 2020 Mar; 43(3):16. PubMed ID: 32108280 [TBL] [Abstract][Full Text] [Related]
20. Phase-field modeling of microstructural pattern formation during directional solidification of peritectic alloys without morphological instability. Lo TS; Karma A; Plapp M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031504. PubMed ID: 11308654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]