These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29786168)

  • 1. Variation in electrode redox potential selects for different microorganisms under cathodic current flow from electrodes in marine sediments.
    Lam BR; Rowe AR; Nealson KH
    Environ Microbiol; 2018 Jun; 20(6):2270-2287. PubMed ID: 29786168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in Applied Redox Potential on Cathodes Enrich for Diverse Electrochemically Active Microbial Isolates From a Marine Sediment.
    Lam BR; Barr CR; Rowe AR; Nealson KH
    Front Microbiol; 2019; 10():1979. PubMed ID: 31555224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Marine sediments microbes capable of electrode oxidation as a surrogate for lithotrophic insoluble substrate metabolism.
    Rowe AR; Chellamuthu P; Lam B; Okamoto A; Nealson KH
    Front Microbiol; 2014; 5():784. PubMed ID: 25642220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox-gradient driven electron transport in a mixed community anodic biofilm.
    Yates MD; Barr Engel S; Eddie BJ; Lebedev N; Malanoski AP; Tender LM
    FEMS Microbiol Ecol; 2018 Jun; 94(6):. PubMed ID: 29722806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.
    Hassan MM; Cheng KY; Ho G; Cord-Ruwisch R
    Biosens Bioelectron; 2017 Jan; 87():531-536. PubMed ID: 27606880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative metatranscriptomics reveals extracellular electron transfer pathways conferring microbial adaptivity to surface redox potential changes.
    Ishii S; Suzuki S; Tenney A; Nealson KH; Bretschger O
    ISME J; 2018 Dec; 12(12):2844-2863. PubMed ID: 30050163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress.
    Darus L; Ledezma P; Keller J; Freguia S
    Photosynth Res; 2016 Mar; 127(3):347-54. PubMed ID: 26407568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes.
    Summers ZM; Gralnick JA; Bond DR
    mBio; 2013 Jan; 4(1):e00420-12. PubMed ID: 23362318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of electrochemical surface plasmon resonance (ESPR) to the study of electroactive microbial biofilms.
    Golden J; Yates MD; Halsted M; Tender L
    Phys Chem Chem Phys; 2018 Oct; 20(40):25648-25656. PubMed ID: 30289415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electricity generation by thermophilic microorganisms from marine sediment.
    Mathis BJ; Marshall CW; Milliken CE; Makkar RS; Creager SE; May HD
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):147-55. PubMed ID: 18080121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological Benefits of Oxygen-Terminating Extracellular Electron Transfer.
    Tokunou Y; Toyofuku M; Nomura N
    mBio; 2022 Dec; 13(6):e0195722. PubMed ID: 36374091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional extracellular electron transfers of electrode-biofilm: Mechanism and application.
    Jiang Y; Zeng RJ
    Bioresour Technol; 2019 Jan; 271():439-448. PubMed ID: 30292689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms.
    Uria N; Ferrera I; Mas J
    BMC Microbiol; 2017 Oct; 17(1):208. PubMed ID: 29047333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species.
    Jangir Y; French S; Momper LM; Moser DP; Amend JP; El-Naggar MY
    Front Microbiol; 2016; 7():756. PubMed ID: 27242768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells.
    Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE.
    Aulenta F; Catervi A; Majone M; Panero S; Reale P; Rossetti S
    Environ Sci Technol; 2007 Apr; 41(7):2554-9. PubMed ID: 17438815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of electron donors and anode potentials on the anode-respiring bacteria community.
    Ying X; Guo K; Chen W; Gu Y; Shen D; Zhou Y; Liang Y; Wang Y; Wang M; Feng H
    Appl Microbiol Biotechnol; 2017 Nov; 101(21):7997-8005. PubMed ID: 28944402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrode-reducing microorganisms that harvest energy from marine sediments.
    Bond DR; Holmes DE; Tender LM; Lovley DR
    Science; 2002 Jan; 295(5554):483-5. PubMed ID: 11799240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes.
    Robinson G; Caldwell GS; Wade MJ; Free A; Jones CLW; Stead SM
    Sci Rep; 2016 Dec; 6():38850. PubMed ID: 27941918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current production by non-methanotrophic bacteria enriched from an anaerobic methane-oxidizing microbial community.
    Berger S; Shaw DR; Berben T; Ouboter HT; In 't Zandt MH; Frank J; Reimann J; Jetten MSM; Welte CU
    Biofilm; 2021 Dec; 3():100054. PubMed ID: 34308332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.