These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Syngas Production via CO Wang Y; Wang Y; Li L; Cui C; Liu X; Da Costa P; Hu C ACS Omega; 2021 Aug; 6(34):22383-22394. PubMed ID: 34497927 [TBL] [Abstract][Full Text] [Related]
7. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. Jeon OS; Lee H; Lee KS; Paidi VK; Ji Y; Kwon OC; Kim JP; Myung JH; Park SY; Yoo YJ; Lee JG; Lee SY; Shul YG ACS Appl Mater Interfaces; 2022 Mar; 14(10):12140-12148. PubMed ID: 35238550 [TBL] [Abstract][Full Text] [Related]
8. Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate. Li Z; Lu J; Ding J; Wang W J Colloid Interface Sci; 2024 Dec; 676():1001-1010. PubMed ID: 39068832 [TBL] [Abstract][Full Text] [Related]
9. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
10. Partial Oxidation of Bio-methane over Nickel Supported on MgO-ZrO Asencios YJO; Yigit N; Wicht T; Stöger-Pollach M; Lucrédio AF; Marcos FCF; Assaf EM; Rupprechter G Top Catal; 2023; 66(19-20):1539-1552. PubMed ID: 37830054 [TBL] [Abstract][Full Text] [Related]
11. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review. Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444 [TBL] [Abstract][Full Text] [Related]
12. Activation and Conversion of Methane to Syngas over ZrO Huang E; Rui N; Rosales R; Liu P; Rodriguez JA J Am Chem Soc; 2023 Apr; ():. PubMed ID: 37017376 [TBL] [Abstract][Full Text] [Related]
13. Tri-reforming of methane over Ni/ZrO Pandey A; Biswas P Environ Sci Pollut Res Int; 2024 May; 31(24):35069-35082. PubMed ID: 38714619 [TBL] [Abstract][Full Text] [Related]
14. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane. Al-Doghachi FA; Islam A; Zainal Z; Saiman MI; Embong Z; Taufiq-Yap YH PLoS One; 2016; 11(1):e0145862. PubMed ID: 26745623 [TBL] [Abstract][Full Text] [Related]
15. Structural and chemical degradation mechanisms of pure YSZ and its components ZrO2 and Y2O3 in carbon-rich fuel gases. Köck EM; Kogler M; Götsch T; Klötzer B; Penner S Phys Chem Chem Phys; 2016 May; 18(21):14333-49. PubMed ID: 27165763 [TBL] [Abstract][Full Text] [Related]
16. Elucidation of the reaction mechanism on dry reforming of methane in an electric field by Nakano N; Torimoto M; Sampei H; Yamashita R; Yamano R; Saegusa K; Motomura A; Nagakawa K; Tsuneki H; Ogo S; Sekine Y RSC Adv; 2022 Mar; 12(15):9036-9043. PubMed ID: 35424901 [TBL] [Abstract][Full Text] [Related]
17. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies. Fan MS; Abdullah AZ; Bhatia S ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096 [TBL] [Abstract][Full Text] [Related]
18. Study on methane conversion to syngas over nano Pt-CeO2-ZrO2/MgO catalysts: Structure and catalytic behavior of catalysts prepared by using ion exchange resin method. Yang M; Guo H; Li Y; Wang W; Zhou L J Environ Sci (China); 2011 Jun; 23 Suppl():S53-8. PubMed ID: 25084594 [TBL] [Abstract][Full Text] [Related]
19. Zirconium Carbide Mediates Coke-Resistant Methane Dry Reforming on Nickel-Zirconium Catalysts. Haug L; Thurner C; Bekheet MF; Bischoff B; Gurlo A; Kunz M; Sartory B; Penner S; Klötzer B Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202213249. PubMed ID: 36379010 [TBL] [Abstract][Full Text] [Related]