These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 29786619)
21. Experimental Study on Dry Reforming of Biogas for Syngas Production over Ni-Based Catalysts. Chein R; Yang Z ACS Omega; 2019 Dec; 4(25):20911-20922. PubMed ID: 31867481 [TBL] [Abstract][Full Text] [Related]
22. A review of dry (CO2) reforming of methane over noble metal catalysts. Pakhare D; Spivey J Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089 [TBL] [Abstract][Full Text] [Related]
23. Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO Wang H; Cui G; Lu H; Li Z; Wang L; Meng H; Li J; Yan H; Yang Y; Wei M Nat Commun; 2024 May; 15(1):3765. PubMed ID: 38704402 [TBL] [Abstract][Full Text] [Related]
24. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy. Naitabdi A; Boucly A; Rochet F; Fagiewicz R; Olivieri G; Bournel F; Benbalagh R; Sirotti F; Gallet JJ Nanoscale; 2018 Apr; 10(14):6566-6580. PubMed ID: 29577122 [TBL] [Abstract][Full Text] [Related]
25. Syngas Production by Chemical Looping Dry Reforming of Methane over Ni-modified MoO Maeno Z; Koiso H; Shitori T; Hiraoka K; Seki S; Namiki N Chem Asian J; 2024 Aug; 19(16):e202301096. PubMed ID: 38146061 [TBL] [Abstract][Full Text] [Related]
26. Preparation, Characterization, and Activity of Pd/PSS-Modified Membranes in the Low Temperature Dry Reforming of Methane with and without Addition of Extra Steam. Mateos-Pedrero C; Soria MA; Guerrero-Ruíz A; Rodríguez-Ramos I Membranes (Basel); 2021 Jul; 11(7):. PubMed ID: 34357168 [TBL] [Abstract][Full Text] [Related]
27. Simple mechanisms of CH Yang H; Wang H; Wei L; Yang Y; Li YW; Wen XD; Jiao H Phys Chem Chem Phys; 2021 Dec; 23(46):26392-26400. PubMed ID: 34792065 [TBL] [Abstract][Full Text] [Related]
28. Effect of Bimetallic Ni-Cr Catalysts for Steam-CO2 Reforming of Methane at High Pressure. Choi BK; Park YH; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2015 Jul; 15(7):5259-63. PubMed ID: 26373119 [TBL] [Abstract][Full Text] [Related]
29. Understanding the CO Oxidation on Pt Nanoparticles Supported on MOFs by Vakili R; Gibson EK; Chansai S; Xu S; Al-Janabi N; Wells PP; Hardacre C; Walton A; Fan X ChemCatChem; 2018 Oct; 10(19):4238-4242. PubMed ID: 31007773 [TBL] [Abstract][Full Text] [Related]
30. Yttrium stabilization and Pt addition to Pd/ZrO Khan HA; Hao J; Tall OE; Farooq A RSC Adv; 2021 Mar; 11(20):11910-11917. PubMed ID: 35423755 [TBL] [Abstract][Full Text] [Related]
31. In Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal-Support Interactions and C-H Bond Activation at Low Temperature. Liu Z; Lustemberg P; Gutiérrez RA; Carey JJ; Palomino RM; Vorokhta M; Grinter DC; Ramírez PJ; Matolín V; Nolan M; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA Angew Chem Int Ed Engl; 2017 Oct; 56(42):13041-13046. PubMed ID: 28815842 [TBL] [Abstract][Full Text] [Related]
32. Dry Reforming of Methane on Ni/LaZrO Jiao H; Wang GC ACS Appl Mater Interfaces; 2024 Jul; 16(27):35166-35178. PubMed ID: 38924504 [TBL] [Abstract][Full Text] [Related]
33. Zirconium-Assisted Activation of Palladium To Boost Syngas Production by Methane Dry Reforming. Köpfle N; Götsch T; Grünbacher M; Carbonio EA; Hävecker M; Knop-Gericke A; Schlicker L; Doran A; Kober D; Gurlo A; Penner S; Klötzer B Angew Chem Int Ed Engl; 2018 Oct; 57(44):14613-14618. PubMed ID: 30179293 [TBL] [Abstract][Full Text] [Related]
34. Dry Reforming of Methane on a Highly-Active Ni-CeO2 Catalyst: Effects of Metal-Support Interactions on C-H Bond Breaking. Liu Z; Grinter DC; Lustemberg PG; Nguyen-Phan TD; Zhou Y; Luo S; Waluyo I; Crumlin EJ; Stacchiola DJ; Zhou J; Carrasco J; Busnengo HF; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA Angew Chem Int Ed Engl; 2016 Jun; 55(26):7455-9. PubMed ID: 27144344 [TBL] [Abstract][Full Text] [Related]
35. Photo-Thermal Dry Reforming of Methane with PGM-Free and PGM-Based Catalysts: A Review. Varotto A; Pasqual Laverdura U; Feroci M; Grilli ML Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124473 [TBL] [Abstract][Full Text] [Related]
36. Barium-Promoted Yttria-Zirconia-Supported Ni Catalyst for Hydrogen Production via the Dry Reforming of Methane: Role of Barium in the Phase Stabilization of Cubic ZrO Al-Fatesh AS; Patel R; Srivastava VK; Ibrahim AA; Naeem MA; Fakeeha AH; Abasaeed AE; Alquraini AA; Kumar R ACS Omega; 2022 May; 7(19):16468-16483. PubMed ID: 35601323 [TBL] [Abstract][Full Text] [Related]
37. Oxidative CO2 reforming of methane in La0.6Sr0.4Co0.8Ga0.2O3-δ (LSCG) hollow fiber membrane reactor. Kathiraser Y; Wang Z; Kawi S Environ Sci Technol; 2013 Dec; 47(24):14510-7. PubMed ID: 24274713 [TBL] [Abstract][Full Text] [Related]
39. Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming. Das S; Sengupta M; Bag A; Shah M; Bordoloi A Nanoscale; 2018 Apr; 10(14):6409-6425. PubMed ID: 29561924 [TBL] [Abstract][Full Text] [Related]