These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 29787331)

  • 1. A Customizable, Low-Cost Perfusion System for Sustaining Tissue Constructs.
    O'Grady BJ; Wang JX; Faley SL; Balikov DA; Lippmann ES; Bellan LM
    SLAS Technol; 2018 Dec; 23(6):592-598. PubMed ID: 29787331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfuse and Reuse: A Low-Cost Three-Dimensional-Printed Perfusion Bioreactor for Tissue Engineering.
    Bender RJ; Askinas C; Vernice NA; Dong X; Harris J; Shih S; Spector JA
    Tissue Eng Part C Methods; 2022 Nov; 28(11):623-633. PubMed ID: 36094108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional cell culture and tissue engineering in a T-CUP (tissue culture under perfusion).
    Timmins NE; Scherberich A; Früh JA; Heberer M; Martin I; Jakob M
    Tissue Eng; 2007 Aug; 13(8):2021-8. PubMed ID: 17590148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
    Khait L; Hecker L; Radnoti D; Birla RK
    Ann Biomed Eng; 2008 May; 36(5):713-25. PubMed ID: 18274906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perfusion directed 3D mineral formation within cell-laden hydrogels.
    Sawyer SW; Shridhar SV; Zhang K; Albrecht LD; Filip AB; Horton JA; Soman P
    Biofabrication; 2018 Jun; 10(3):035013. PubMed ID: 29882516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfusion and endothelialization of engineered tissues with patterned vascular networks.
    Kinstlinger IS; Calderon GA; Royse MK; Means AK; Grigoryan B; Miller JS
    Nat Protoc; 2021 Jun; 16(6):3089-3113. PubMed ID: 34031610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three dimensional MEMS microfluidic perfusion system for thick brain slice cultures.
    Choi Y; McClain MA; LaPlaca MC; Frazier AB; Allen MG
    Biomed Microdevices; 2007 Feb; 9(1):7-13. PubMed ID: 17091392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel perfusion bioreactor providing a homogenous milieu for tissue regeneration.
    Dvir T; Benishti N; Shachar M; Cohen S
    Tissue Eng; 2006 Oct; 12(10):2843-52. PubMed ID: 17518653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro formation of vascular-like networks using hydrogels.
    Takei T; Sakai S; Yoshida M
    J Biosci Bioeng; 2016 Nov; 122(5):519-527. PubMed ID: 27117917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methodology for optimal in vitro cell expansion in tissue engineering.
    Melero-Martin JM; Santhalingam S; Al-Rubeai M
    Adv Biochem Eng Biotechnol; 2009; 112():209-29. PubMed ID: 19290503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro.
    Cartmell SH; Porter BD; García AJ; Guldberg RE
    Tissue Eng; 2003 Dec; 9(6):1197-203. PubMed ID: 14670107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of a bioreactor to perfuse radially-confined hydrogel constructs: design and characterization of mass transport properties.
    Eniwumide JO; Lee DA; Bader DL
    Biorheology; 2009; 46(5):417-37. PubMed ID: 19940357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered 3D tissue models for cell-laden microfluidic channels.
    Song YS; Lin RL; Montesano G; Durmus NG; Lee G; Yoo SS; Kayaalp E; Haeggström E; Khademhosseini A; Demirci U
    Anal Bioanal Chem; 2009 Sep; 395(1):185-93. PubMed ID: 19629459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels.
    Lee W; Lee V; Polio S; Keegan P; Lee JH; Fischer K; Park JK; Yoo SS
    Biotechnol Bioeng; 2010 Apr; 105(6):1178-86. PubMed ID: 19953677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional cell seeding and growth in radial-flow perfusion bioreactor for in vitro tissue reconstruction.
    Kitagawa T; Yamaoka T; Iwase R; Murakami A
    Biotechnol Bioeng; 2006 Apr; 93(5):947-54. PubMed ID: 16329144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.
    Yang J; Zhang YS; Yue K; Khademhosseini A
    Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of perfusion on metabolism and matrix production by bovine articular chondrocytes in hydrogel scaffolds.
    Xu X; Urban JP; Tirlapur U; Wu MH; Cui Z; Cui Z
    Biotechnol Bioeng; 2006 Apr; 93(6):1103-11. PubMed ID: 16470872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward the directed self-assembly of engineered tissues.
    Varner VD; Nelson CM
    Annu Rev Chem Biomol Eng; 2014; 5():507-26. PubMed ID: 24797818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications.
    Rizwan M; Peh GSL; Ang HP; Lwin NC; Adnan K; Mehta JS; Tan WS; Yim EKF
    Biomaterials; 2017 Mar; 120():139-154. PubMed ID: 28061402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered channels enhance cellular density in perfused scaffolds.
    Kennedy JP; McCandless SP; Rauf A; Williams LM; Hillam J; Hitchcock RW
    Acta Biomater; 2011 Nov; 7(11):3896-904. PubMed ID: 21745609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.