These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29787939)

  • 1. DigBody
    Burgos MA; Sanmiguel-Rojas E; Singh N; Esteban-Ortega F
    Comput Biol Med; 2018 Jul; 98():118-125. PubMed ID: 29787939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New CFD tools to evaluate nasal airflow.
    Burgos MA; Sanmiguel-Rojas E; Del Pino C; Sevilla-García MA; Esteban-Ortega F
    Eur Arch Otorhinolaryngol; 2017 Aug; 274(8):3121-3128. PubMed ID: 28547013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual surgery for patients with nasal obstruction: Use of computational fluid dynamics (MeComLand
    Burgos MA; Sevilla García MA; Sanmiguel Rojas E; Del Pino C; Fernández Velez C; Piqueras F; Esteban Ortega F
    Acta Otorrinolaringol Esp (Engl Ed); 2018; 69(3):125-133. PubMed ID: 28923473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
    Frank-Ito DO; Kimbell JS; Borojeni AAT; Garcia GJM; Rhee JS
    Clin Biomech (Bristol); 2019 Jan; 61():172-180. PubMed ID: 30594764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CFD approach to understand nasoseptal perforations.
    Burgos MA; Sanmiguel-Rojas E; Rodríguez R; Esteban-Ortega F
    Eur Arch Otorhinolaryngol; 2018 Sep; 275(9):2265-2272. PubMed ID: 30043077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics (CFD), virtual rhinomanometry, and virtual surgery for neonatal congenital nasal pyriform aperture stenosis.
    Moreddu E; Meister L; Médale M; Nicollas R
    Int J Pediatr Otorhinolaryngol; 2024 Jul; 182():112025. PubMed ID: 38950452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient specific CFD models of nasal airflow: overview of methods and challenges.
    Kim SK; Na Y; Kim JI; Chung SK
    J Biomech; 2013 Jan; 46(2):299-306. PubMed ID: 23261244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward personalized nasal surgery using computational fluid dynamics.
    Rhee JS; Pawar SS; Garcia GJ; Kimbell JS
    Arch Facial Plast Surg; 2011; 13(5):305-10. PubMed ID: 21502467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Surgery for the Nasal Airway: A Preliminary Report on Decision Support and Technology Acceptance.
    Vanhille DL; Garcia GJM; Asan O; Borojeni AAT; Frank-Ito DO; Kimbell JS; Pawar SS; Rhee JS
    JAMA Facial Plast Surg; 2018 Jan; 20(1):63-69. PubMed ID: 29049474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.
    Oishi M; Fukuda M; Hiraishi T; Yajima N; Sato Y; Fujii Y
    J Neurosurg; 2012 Sep; 117(3):555-65. PubMed ID: 22746377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling congenital nasal pyriform aperture stenosis using computational fluid dynamics.
    Patel TR; Li C; Krebs J; Zhao K; Malhotra P
    Int J Pediatr Otorhinolaryngol; 2018 Jun; 109():180-184. PubMed ID: 29728177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity.
    Xiong G; Zhan J; Zuo K; Li J; Rong L; Xu G
    Med Biol Eng Comput; 2008 Nov; 46(11):1161-7. PubMed ID: 18726628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nasal surgery handled by CFD tools.
    Sanmiguel-Rojas E; Burgos MA; Esteban-Ortega F
    Int J Numer Method Biomed Eng; 2018 Oct; 34(10):e3126. PubMed ID: 29968373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method.
    Tretiakow D; Tesch K; Meyer-Szary J; Markiet K; Skorek A
    Eur Arch Otorhinolaryngol; 2021 May; 278(5):1443-1453. PubMed ID: 33068172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy.
    Ozlugedik S; Nakiboglu G; Sert C; Elhan A; Tonuk E; Akyar S; Tekdemir I
    Laryngoscope; 2008 Feb; 118(2):330-4. PubMed ID: 18030167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors.
    Oishi M; Fukuda M; Yajima N; Yoshida K; Takahashi M; Hiraishi T; Takao T; Saito A; Fujii Y
    J Neurosurg; 2013 Jul; 119(1):94-105. PubMed ID: 23581591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.