These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 29787939)
41. Aerodynamic characteristics inside the rhino-sinonasal cavity after functional endoscopic sinus surgery. Chen XB; Lee HP; Chong VF; Wang de Y Am J Rhinol Allergy; 2011; 25(6):388-92. PubMed ID: 22185741 [TBL] [Abstract][Full Text] [Related]
42. An Interactive, Patient-Specific Virtual Surgical Planning System for Upper Airway Obstruction Treatments. Clipp RB; Vicory J; Horvath S; Mitran S; Kimbell JS; Rhee JS; Enquobahrie A Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5802-5805. PubMed ID: 30441654 [TBL] [Abstract][Full Text] [Related]
43. Assessing nasal airway resistance and symmetry: An approach to global perspective through computational fluid dynamics. Burgos MA; Bastir M; Pérez-Ramos A; Sanz-Prieto D; Heuzé Y; Maréchal L; Esteban-Ortega F Int J Numer Method Biomed Eng; 2024 Jul; 40(7):e3830. PubMed ID: 38700070 [TBL] [Abstract][Full Text] [Related]
44. Integration of oncologic margins in three-dimensional virtual planning for head and neck surgery, including a validation of the software pathway. Kraeima J; Schepers RH; van Ooijen PM; Steenbakkers RJ; Roodenburg JL; Witjes MJ J Craniomaxillofac Surg; 2015 Oct; 43(8):1374-9. PubMed ID: 26302937 [TBL] [Abstract][Full Text] [Related]
45. Impact of inferior turbinate hypertrophy on the aerodynamic pattern and physiological functions of the turbulent airflow - a CFD simulation model. Chen XB; Lee HP; Chong VF; Wang de Y Rhinology; 2010 Jun; 48(2):163-8. PubMed ID: 20502754 [TBL] [Abstract][Full Text] [Related]
46. Three-dimensional virtual reality surgical planning and simulation workbench for orthognathic surgery. Xia J; Samman N; Yeung RW; Shen SG; Wang D; Ip HH; Tideman H Int J Adult Orthodon Orthognath Surg; 2000; 15(4):265-82. PubMed ID: 11307184 [TBL] [Abstract][Full Text] [Related]
47. Identifying patients who may benefit from inferior turbinate reduction using computer simulations. Hariri BM; Rhee JS; Garcia GJ Laryngoscope; 2015 Dec; 125(12):2635-41. PubMed ID: 25963247 [TBL] [Abstract][Full Text] [Related]
48. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis. Wang T; Chen D; Wang PH; Chen J; Deng J Braz J Med Biol Res; 2016 Aug; 49(9):e5182. PubMed ID: 27533764 [TBL] [Abstract][Full Text] [Related]
49. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing. Oshiro Y; Ohkohchi N Tissue Eng Part A; 2017 Jun; 23(11-12):474-480. PubMed ID: 28343411 [TBL] [Abstract][Full Text] [Related]
50. [Three-dimensional visualization of virtual surgery for intertrochanteric fractures]. Wang D; Xie L; Pei GX; Liu YG; Jin D; Zhao ZQ; Jiang XR Nan Fang Yi Ke Da Xue Xue Bao; 2010 May; 30(5):1165-8. PubMed ID: 20501423 [TBL] [Abstract][Full Text] [Related]
51. An overview of numerical modelling of nasal airflow. Bailie N; Hanna B; Watterson J; Gallagher G Rhinology; 2006 Mar; 44(1):53-7. PubMed ID: 16550951 [TBL] [Abstract][Full Text] [Related]
52. Influence of the location of nasal polyps on olfactory airflow and olfaction. Nishijima H; Kondo K; Yamamoto T; Nomura T; Kikuta S; Shimizu Y; Mizushima Y; Yamasoba T Int Forum Allergy Rhinol; 2018 Jun; 8(6):695-706. PubMed ID: 29394000 [TBL] [Abstract][Full Text] [Related]
53. Nasal cavity volume changes after rapid maxillary expansion in adolescents evaluated with 3-dimensional simulation and modeling programs. Görgülü S; Gokce SM; Olmez H; Sagdic D; Ors F Am J Orthod Dentofacial Orthop; 2011 Nov; 140(5):633-40. PubMed ID: 22051483 [TBL] [Abstract][Full Text] [Related]
54. Advances in Technology for Functional Rhinoplasty: The Next Frontier. Pawar SS; Garcia GJ; Rhee JS Facial Plast Surg Clin North Am; 2017 May; 25(2):263-270. PubMed ID: 28340656 [TBL] [Abstract][Full Text] [Related]
55. New technologies applied to surgical processes: Virtual Reality and rapid prototyping. Suárez-Mejías C; Gomez-Ciriza G; Valverde I; Parra Calderón C; Gómez-Cía T Stud Health Technol Inform; 2015; 210():669-71. PubMed ID: 25991234 [TBL] [Abstract][Full Text] [Related]
56. Integration of patient-specific paranasal sinus computed tomographic data into a virtual surgical environment. Parikh SS; Chan S; Agrawal SK; Hwang PH; Salisbury CM; Rafii BY; Varma G; Salisbury KJ; Blevins NH Am J Rhinol Allergy; 2009; 23(4):442-7. PubMed ID: 19671264 [TBL] [Abstract][Full Text] [Related]
57. An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint. Kim DS; Woo SY; Yang HJ; Huh KH; Lee SS; Heo MS; Choi SC; Hwang SJ; Yi WJ J Craniomaxillofac Surg; 2014 Dec; 42(8):2010-7. PubMed ID: 25458350 [TBL] [Abstract][Full Text] [Related]
58. An automated segmentation framework for nasal computational fluid dynamics analysis in computed tomography. Huang R; Nedanoski A; Fletcher DF; Singh N; Schmid J; Young PM; Stow N; Bi L; Traini D; Wong E; Phillips CL; Grunstein RR; Kim J Comput Biol Med; 2019 Dec; 115():103505. PubMed ID: 31704374 [TBL] [Abstract][Full Text] [Related]
59. A combination of three-dimensional printing and computer-assisted virtual surgical procedure for preoperative planning of acetabular fracture reduction. Zeng C; Xing W; Wu Z; Huang H; Huang W Injury; 2016 Oct; 47(10):2223-2227. PubMed ID: 27372187 [TBL] [Abstract][Full Text] [Related]
60. Utility of three-dimensional computed tomography for anatomical assistance in endoscopic endonasal transsphenoidal surgery. Inoue A; Ohnishi T; Kohno S; Harada H; Nishikawa M; Ozaki S; Matsumoto S; Ohue S Neurosurg Rev; 2015 Jul; 38(3):559-65. PubMed ID: 25843301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]